Advanced Search
MyIDEAS: Login

Using Stata's -ml method d2- to estimate a multi-state Markov transition model

Contents:

Author Info

  • Thomas Büttner

    ()
    (London School of Economics)

Registered author(s):

    Abstract

    I will discuss my experience with Stata's ml method d2 when coding and estimator for a multi-state Markov transition model with unobserved heterogeneity. When analytical derivatives are available, programming a "d2" estimator is in principle straightforward and offers potentially huge rewards in terms of convergence and speed of convergence: When the likelihood is flat, method "d0" may fail to converge (after a many iterations) as numerical derivatives cannot be computed, whereas convergence is often achieved quickly with method "d2". However, when the likelihood function is non-standard, programming a "d2" estimator may be complicated by Stata's limited range of matrix commands. In these cases, the researcher has to be inventive and may have to take a significant "diversion" to compute blocks of the Hessian that should have been straightforward with enhanced matrix capabilities. These "diversions" may be difficult to code and increase evaluation time significantly. With large datasets, this may also push the memory requirements beyond the available limit.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://fmwww.bc.edu/repec/usug2003/Buettner_stata.pdf
    Download Restriction: no

    Bibliographic Info

    Paper provided by Stata Users Group in its series United Kingdom Stata Users' Group Meetings 2003 with number 11.

    as in new window
    Length:
    Date of creation: 16 Mar 2003
    Date of revision:
    Handle: RePEc:boc:usug03:11

    Contact details of provider:
    Web page: http://www.stata.com/meeting/9uk
    More information through EDIRC

    Related research

    Keywords:

    This paper has been announced in the following NEP Reports:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:boc:usug03:11. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F Baum).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.