IDEAS home Printed from
   My bibliography  Save this paper

Diagnostics for generalised linear mixed models


  • Sophia Rabe-Hesketh

    () (King's College London)

  • Anders Skrondal

    (Norwegian Institute of Public Health)


Generalized linear mixed models are generalized linear models that include random effects varying between clusters or 'higher-level' units of hierarchically structured data. Such models can be estimated using gllamm. The prediction command gllapred can be used to obtain empirical Bayes predictions of the random effects, interpretable as higher-level residuals. Combined with approximate sampling standard deviations, these residuals can be used for identifying unusual higher-level units. However, since the distribution of these predictions is generally not known, we recommend simulating responses from the model using gllasim and comparing 'observed' and simulated residuals. We also discuss different types of level 1 residuals and influence diagnostics.

Suggested Citation

  • Sophia Rabe-Hesketh & Anders Skrondal, 2003. "Diagnostics for generalised linear mixed models," United Kingdom Stata Users' Group Meetings 2003 05, Stata Users Group.
  • Handle: RePEc:boc:usug03:05

    Download full text from publisher

    File URL:
    Download Restriction: no

    References listed on IDEAS

    1. Wu, De-Min, 1973. "Alternative Tests of Independence Between Stochastic Regressors and Disturbances," Econometrica, Econometric Society, vol. 41(4), pages 733-750, July.
    2. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-1054, July.
    3. Hausman, Jerry, 2015. "Specification tests in econometrics," Applied Econometrics, Publishing House "SINERGIA PRESS", vol. 38(2), pages 112-134.
    4. Douglas Staiger & James H. Stock, 1997. "Instrumental Variables Regression with Weak Instruments," Econometrica, Econometric Society, vol. 65(3), pages 557-586, May.
    5. K. Newey, Whitney, 1985. "Generalized method of moments specification testing," Journal of Econometrics, Elsevier, vol. 29(3), pages 229-256, September.
    6. Martin S. Eichenbaum & Lars Peter Hansen & Kenneth J. Singleton, 1988. "A Time Series Analysis of Representative Agent Models of Consumption and Leisure Choice Under Uncertainty," The Quarterly Journal of Economics, Oxford University Press, vol. 103(1), pages 51-78.
    7. Jinyong Hahn & Jerry Hausman, 2002. "A New Specification Test for the Validity of Instrumental Variables," Econometrica, Econometric Society, vol. 70(1), pages 163-189, January.
    8. Chamberlain, Gary, 1982. "Multivariate regression models for panel data," Journal of Econometrics, Elsevier, vol. 18(1), pages 5-46, January.
    9. Moulton, Brent R., 1986. "Random group effects and the precision of regression estimates," Journal of Econometrics, Elsevier, vol. 32(3), pages 385-397, August.
    10. Cumby, Robert E. & Huizinga, John & Obstfeld, Maurice, 1983. "Two-step two-stage least squares estimation in models with rational expectations," Journal of Econometrics, Elsevier, vol. 21(3), pages 333-355, April.
    11. Cragg, John G, 1983. "More Efficient Estimation in the Presence of Heteroscedasticity of Unknown Form," Econometrica, Econometric Society, vol. 51(3), pages 751-763, May.
    12. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    13. Caroline Hoxby & M. Daniele Paserman, 1998. "Overidentification Tests with Grouped Data," NBER Technical Working Papers 0223, National Bureau of Economic Research, Inc.
    14. Pesaran, M Hashem & Taylor, Larry W, 1999. " Diagnostics for IV Regressions," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 61(2), pages 255-281, May.
    15. Arellano, M, 1987. "Computing Robust Standard Errors for Within-Groups Estimators," Oxford Bulletin of Economics and Statistics, Department of Economics, University of Oxford, vol. 49(4), pages 431-434, November.
    16. Nakamura, Alice & Nakamura, Masao, 1981. "On the Relationships among Several Specification Error Tests Presented by Durbin, Wu, and Hausman," Econometrica, Econometric Society, vol. 49(6), pages 1583-1588, November.
    17. Breusch, T S & Pagan, A R, 1979. "A Simple Test for Heteroscedasticity and Random Coefficient Variation," Econometrica, Econometric Society, vol. 47(5), pages 1287-1294, September.
    18. Hausman, Jerry A. & Taylor, William E., 1981. "A generalized specification test," Economics Letters, Elsevier, vol. 8(3), pages 239-245.
    19. Hansen, Lars Peter & Heaton, John & Yaron, Amir, 1996. "Finite-Sample Properties of Some Alternative GMM Estimators," Journal of Business & Economic Statistics, American Statistical Association, vol. 14(3), pages 262-280, July.
    20. John Shea, 1997. "Instrument Relevance in Multivariate Linear Models: A Simple Measure," The Review of Economics and Statistics, MIT Press, vol. 79(2), pages 348-352, May.
    21. Godfrey, Leslie G., 1978. "Testing for multiplicative heteroskedasticity," Journal of Econometrics, Elsevier, vol. 8(2), pages 227-236, October.
    22. Koenker, Roger, 1981. "A note on studentizing a test for heteroscedasticity," Journal of Econometrics, Elsevier, vol. 17(1), pages 107-112, September.
    Full references (including those not matched with items on IDEAS)

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:


    Access and download statistics


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:boc:usug03:05. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F Baum). General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.