Advanced Search
MyIDEAS: Login to save this paper or follow this series

Random fixed point equations and inverse problems by collage theorem

Contents:

Author Info

  • Davide La Torre

    (University of Milan)

  • Herb Kunze
  • Edward Vrscay
Registered author(s):

    Abstract

    In this paper we are interested in the direct and inverse problems for the following class of random fixed point equations $T(w,x(w))=x(w)$ where $T:\Omega\times X\to X$ is a given operator, $\Omega$ is a probability space and $X$ is a complete metric space. The inverse problem is solved by recourse to the collage theorem for contractive maps. We then consider two applications: (i) random integral equations and (ii) random iterated function systems with greyscale maps (RIFSM), for which noise is added to the classical IFSM.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://services.bepress.com/unimi/statistics/art11
    Download Restriction: no

    Bibliographic Info

    Paper provided by Universit√° degli Studi di Milano in its series UNIMI - Research Papers in Economics, Business, and Statistics with number unimi-1030.

    as in new window
    Length:
    Date of creation: 23 Jun 2006
    Date of revision:
    Handle: RePEc:bep:unimip:unimi-1030

    Note: oai:cdlib1:unimi-1030
    Contact details of provider:
    Postal: Via Conservatorio 7 - 20122 Milano
    Phone: +39 02 503 16486
    Fax: +39 02 503 16475
    Web page: http://services.bepress.com/unimi
    More information through EDIRC

    Related research

    Keywords: Random fixed point equations; collage theorem;

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:bep:unimip:unimi-1030. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Christopher F. Baum).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.