Advanced Search
MyIDEAS: Login to save this paper or follow this series

Pricing European Options on Deferred Insurance

Contents:

Author Info

  • Jonathan Ziveyi

    ()
    (School of Risk and Actuarial Studies, University of New South Wales)

  • Craig Blackburn

    ()
    (School of Risk and Actuarial Studies and ARC Centre of Excellence in Population Ageing Research, Australian School of Business, University of New South Wales)

  • Michael Sherris

    ()
    (School of Risk and Actuarial Studies and ARC Centre of Excellence in Population Ageing Research, Australian School of Business, University of New South Wales)

Registered author(s):

    Abstract

    This paper considers the pricing of European call options written on pure endowment and deferred life annuity contracts, also known as guaranteed annuity options. These contracts provide a guarantee value at maturity of the option. The contract valuation is dependent on stochastic interest rate and mortality processes. We assume single-factor stochastic squareroot processes for both interest rate and mortality intensity, with mortality being a timeinhomogeneous process. We then derive the pricing partial differential equation (PDE) and the corresponding transition density PDE for options written on deferred contracts. The general solution of the pricing PDE is derived as a function of the transition density function. We solve the transition density PDE by first transforming it to a system of characteristic PDEs using Laplace transform techniques and then applying the method of characteristics. Once an explicit expression for the density function is found, we then use sparse grid quadrature techniques to generate European call option prices on deferred insurance products. This approach can easily be generalised to other contracts which are driven by similar stochastic processes presented in this paper. We test the sensitivity of the option prices by varying independent parameters in our model. As option maturity increases, the corresponding option prices significantly increase. The effect of miss-pricing the guaranteed annuity value is analysed, as is the benefit of replacing the whole-life annuity with a term annuity to remove volatility of the old age population.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://cepar.edu.au/media/69093/wp1202_pricing_european_options_on_deferred_insurance.pdf
    File Function: First version, 2012
    Download Restriction: no

    Bibliographic Info

    Paper provided by ARC Centre of Excellence in Population Ageing Research (CEPAR), Australian School of Business, University of New South Wales in its series Working Papers with number 201202.

    as in new window
    Length: 39 pages
    Date of creation: Feb 2012
    Date of revision:
    Handle: RePEc:asb:wpaper:201202

    Contact details of provider:
    Postal: Ground Floor, East Wing, UNSW Kensington Campus, Sydney NSW 2052
    Phone: (+61)-2-9931 9202
    Fax: (+61)-2 9385 6956
    Email:
    Web page: http://www.cepar.edu.au
    More information through EDIRC

    Related research

    Keywords: Mortality risk; Deferred insurance products; European options; Laplace Transforms;

    Find related papers by JEL classification:

    This paper has been announced in the following NEP Reports:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:asb:wpaper:201202. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Elena Capatina).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.