IDEAS home Printed from https://ideas.repec.org/p/arx/papers/cond-mat-0501292.html
   My bibliography  Save this paper

The Dynamics of Financial Markets -- Mandelbrot's multifractal cascades, and beyond

Author

Listed:
  • Lisa Borland
  • Jean-Philippe Bouchaud
  • Jean-Francois Muzy
  • Gilles Zumbach

Abstract

This is a short review in honor of B. Mandelbrot's 80st birthday, to appear in W ilmott magazine. We discuss how multiplicative cascades and related multifractal ideas might be relevant to model the main statistical features of financial time series, in particular the intermittent, long-memory nature of the volatility. We describe in details the Bacry-Muzy-Delour multifractal random walk. We point out some inadequacies of the current models, in particular concerning time reversal symmetry, and propose an alternative family of multi-timescale models, intermediate between GARCH models and multifractal models, that seem quite promising.

Suggested Citation

  • Lisa Borland & Jean-Philippe Bouchaud & Jean-Francois Muzy & Gilles Zumbach, 2005. "The Dynamics of Financial Markets -- Mandelbrot's multifractal cascades, and beyond," Papers cond-mat/0501292, arXiv.org.
  • Handle: RePEc:arx:papers:cond-mat/0501292
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/cond-mat/0501292
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. J-P. Bouchaud & M. Potters, 2001. "Welcome to a non-Black-Scholes world," Quantitative Finance, Taylor & Francis Journals, vol. 1(5), pages 482-483.
    2. Miccichè, Salvatore & Bonanno, Giovanni & Lillo, Fabrizio & Mantegna, Rosario N, 2002. "Volatility in financial markets: stochastic models and empirical results," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 314(1), pages 756-761.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Chunxia & Zhu, Xueshuai & Li, Qian & Chen, Yanhua & Deng, Qiangqiang, 2014. "Research on the evolution of stock correlation based on maximal spanning trees," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 415(C), pages 1-18.
    2. Omar El Euch & Jim Gatheral & Radov{s} Radoiv{c}i'c & Mathieu Rosenbaum, 2018. "The Zumbach effect under rough Heston," Papers 1809.02098, arXiv.org.
    3. Leopoldo S'anchez-Cant'u & Carlos Arturo Soto-Campos & Andriy Kryvko, 2016. "Evidence of Self-Organization in Time Series of Capital Markets," Papers 1604.03996, arXiv.org, revised Mar 2017.
    4. Oussama Tilfani & My Youssef El Boukfaoui, 2020. "Multifractal Analysis of African Stock Markets During the 2007–2008 US Crisis," Review of Pacific Basin Financial Markets and Policies (RPBFMP), World Scientific Publishing Co. Pte. Ltd., vol. 22(04), pages 1-31, January.
    5. Filimonov, Vladimir & Sornette, Didier, 2015. "Power law scaling and “Dragon-Kings” in distributions of intraday financial drawdowns," Chaos, Solitons & Fractals, Elsevier, vol. 74(C), pages 27-45.
    6. L. Borland & J. -Ph. Bouchaud, 2005. "On a multi-timescale statistical feedback model for volatility fluctuations," Papers physics/0507073, arXiv.org.
    7. Giacomo Bormetti & Sofia Cazzaniga, 2014. "Multiplicative noise, fast convolution and pricing," Quantitative Finance, Taylor & Francis Journals, vol. 14(3), pages 481-494, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lisa Borland & Jean-Philippe Bouchaud & Jean-Francois Muzy & Gilles Zumbach, 2005. "The Dynamics of Financial Markets -- Mandelbrot's multifractal cascades, and beyond," Science & Finance (CFM) working paper archive 500061, Science & Finance, Capital Fund Management.
    2. DAI & Feng QIN & Zifu, 2005. "DF Structure Models for Options Pricing," The IUP Journal of Applied Economics, IUP Publications, vol. 0(6), pages 61-77, November.
    3. Mikhail Martynov & Olga Rozanova, 2010. "A certain estimate of volatility through return for stochastic volatility models," Papers 1009.5129, arXiv.org, revised Jul 2011.
    4. Michele Vodret & Iacopo Mastromatteo & Bence Tóth & Michael Benzaquen, 2023. "Microfounding GARCH models and beyond: a Kyle-inspired model with adaptive agents," Journal of Economic Interaction and Coordination, Springer;Society for Economic Science with Heterogeneous Interacting Agents, vol. 18(3), pages 599-625, July.
    5. Lemmens, D. & Liang, L.Z.J. & Tempere, J. & De Schepper, A., 2010. "Pricing bounds for discrete arithmetic Asian options under Lévy models," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(22), pages 5193-5207.
    6. Gilles Daniel & Nathan Joseph & David Bree, 2005. "Stochastic volatility and the goodness-of-fit of the Heston model," Quantitative Finance, Taylor & Francis Journals, vol. 5(2), pages 199-211.
    7. feng dai, 2004. "The Partial Distribution: Definition, Properties and Applications in Economy," Econometrics 0403008, University Library of Munich, Germany.
    8. Li, Chao & Shang, Pengjian, 2018. "Complexity analysis based on generalized deviation for financial markets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 494(C), pages 118-128.
    9. Mei-Ling Cai & Zhang-HangJian Chen & Sai-Ping Li & Xiong Xiong & Wei Zhang & Ming-Yuan Yang & Fei Ren, 2022. "New volatility evolution model after extreme events," Papers 2201.03213, arXiv.org.
    10. Jaume Masoliver & Josep Perello, 2006. "Multiple time scales and the exponential Ornstein-Uhlenbeck stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 6(5), pages 423-433.
    11. Cai, Mei-Ling & Chen, Zhang-HangJian & Li, Sai-Ping & Xiong, Xiong & Zhang, Wei & Yang, Ming-Yuan & Ren, Fei, 2022. "New volatility evolution model after extreme events," Chaos, Solitons & Fractals, Elsevier, vol. 154(C).
    12. F. Baldovin & F. Camana & M. Caporin & M. Caraglio & A.L. Stella, 2015. "Ensemble properties of high-frequency data and intraday trading rules," Quantitative Finance, Taylor & Francis Journals, vol. 15(2), pages 231-245, February.
    13. Miccichè, S., 2016. "Understanding the determinants of volatility clustering in terms of stationary Markovian processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 186-197.
    14. Aki-Hiro Sato & Paolo Tasca & Takashi Isogai, 2015. "Dynamic Interaction Between Asset Prices and Bank Behavior: A Systemic Risk Perspective," Papers 1504.07152, arXiv.org, revised Feb 2017.
    15. Andria, Joseph & di Tollo, Giacomo & Kalda, Jaan, 2022. "The predictive power of power-laws: An empirical time-arrow based investigation," Chaos, Solitons & Fractals, Elsevier, vol. 162(C).
    16. De Domenico, Federica & Livan, Giacomo & Montagna, Guido & Nicrosini, Oreste, 2023. "Modeling and simulation of financial returns under non-Gaussian distributions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 622(C).
    17. G. L. Buchbinder & K. M. Chistilin, 2006. "Multiple time scales and the empirical models for stochastic volatility," Papers physics/0611048, arXiv.org.
    18. Linden, Mikael, 2005. "Estimating the distribution of volatility of realized stock returns and exchange rate changes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 352(2), pages 573-583.
    19. Kim, Kyungwon & Jung, Sean S., 2014. "Empirical analysis of structural change in Credit Default Swap volatility," Chaos, Solitons & Fractals, Elsevier, vol. 60(C), pages 56-67.
    20. Feng Dai & Ling Liang, 2005. "The Advance in Partial Distribution: A New Mathematical Tool for Economic Management," EERI Research Paper Series EERI_RP_2005_04, Economics and Econometrics Research Institute (EERI), Brussels.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:cond-mat/0501292. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.