IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2404.00013.html
   My bibliography  Save this paper

Missing Data Imputation With Granular Semantics and AI-driven Pipeline for Bankruptcy Prediction

Author

Listed:
  • Debarati Chakraborty
  • Ravi Ranjan

Abstract

This work focuses on designing a pipeline for the prediction of bankruptcy. The presence of missing values, high dimensional data, and highly class-imbalance databases are the major challenges in the said task. A new method for missing data imputation with granular semantics has been introduced here. The merits of granular computing have been explored here to define this method. The missing values have been predicted using the feature semantics and reliable observations in a low-dimensional space, in the granular space. The granules are formed around every missing entry, considering a few of the highly correlated features and most reliable closest observations to preserve the relevance and reliability, the context, of the database against the missing entries. An intergranular prediction is then carried out for the imputation within those contextual granules. That is, the contextual granules enable a small relevant fraction of the huge database to be used for imputation and overcome the need to access the entire database repetitively for each missing value. This method is then implemented and tested for the prediction of bankruptcy with the Polish Bankruptcy dataset. It provides an efficient solution for big and high-dimensional datasets even with large imputation rates. Then an AI-driven pipeline for bankruptcy prediction has been designed using the proposed granular semantic-based data filling method followed by the solutions to the issues like high dimensional dataset and high class-imbalance in the dataset. The rest of the pipeline consists of feature selection with the random forest for reducing dimensionality, data balancing with SMOTE, and prediction with six different popular classifiers including deep NN. All methods defined here have been experimentally verified with suitable comparative studies and proven to be effective on all the data sets captured over the five years.

Suggested Citation

  • Debarati Chakraborty & Ravi Ranjan, 2024. "Missing Data Imputation With Granular Semantics and AI-driven Pipeline for Bankruptcy Prediction," Papers 2404.00013, arXiv.org.
  • Handle: RePEc:arx:papers:2404.00013
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2404.00013
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2404.00013. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.