IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2403.05704.html
   My bibliography  Save this paper

Non-robustness of diffusion estimates on networks with measurement error

Author

Listed:
  • Arun G. Chandrasekhar
  • Paul Goldsmith-Pinkham
  • Tyler H. McCormick
  • Samuel Thau
  • Jerry Wei

Abstract

Network diffusion models are used to study things like disease transmission, information spread, and technology adoption. However, small amounts of mismeasurement are extremely likely in the networks constructed to operationalize these models. We show that estimates of diffusions are highly non-robust to this measurement error. First, we show that even when measurement error is vanishingly small, such that the share of missed links is close to zero, forecasts about the extent of diffusion will greatly underestimate the truth. Second, a small mismeasurement in the identity of the initial seed generates a large shift in the locations of expected diffusion path. We show that both of these results still hold when the vanishing measurement error is only local in nature. Such non-robustness in forecasting exists even under conditions where the basic reproductive number is consistently estimable. Possible solutions, such as estimating the measurement error or implementing widespread detection efforts, still face difficulties because the number of missed links are so small. Finally, we conduct Monte Carlo simulations on simulated networks, and real networks from three settings: travel data from the COVID-19 pandemic in the western US, a mobile phone marketing campaign in rural India, and in an insurance experiment in China.

Suggested Citation

  • Arun G. Chandrasekhar & Paul Goldsmith-Pinkham & Tyler H. McCormick & Samuel Thau & Jerry Wei, 2024. "Non-robustness of diffusion estimates on networks with measurement error," Papers 2403.05704, arXiv.org, revised Apr 2024.
  • Handle: RePEc:arx:papers:2403.05704
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2403.05704
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2403.05704. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.