IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2403.00139.html
   My bibliography  Save this paper

Optimal positioning in derivative securities in incomplete markets

Author

Listed:
  • Tim Leung
  • Matthew Lorig
  • Yoshihiro Shirai

Abstract

This paper analyzes a problem of optimal static hedging using derivatives in incomplete markets. The investor is assumed to have a risk exposure to two underlying assets. The hedging instruments are vanilla options written on a single underlying asset. The hedging problem is formulated as a utility maximization problem whereby the form of the optimal static hedge is determined. Among our results, a semi-analytical solution for the optimizer is found through variational methods for exponential, power/logarithmic, and quadratic utility. When vanilla options are available for each underlying asset, the optimal solution is related to the fixed points of a Lipschitz map. In the case of exponential utility, there is only one such fixed point, and subsequent iterations of the map converge to it.

Suggested Citation

  • Tim Leung & Matthew Lorig & Yoshihiro Shirai, 2024. "Optimal positioning in derivative securities in incomplete markets," Papers 2403.00139, arXiv.org.
  • Handle: RePEc:arx:papers:2403.00139
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2403.00139
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Breeden, Douglas T & Litzenberger, Robert H, 1978. "Prices of State-contingent Claims Implicit in Option Prices," The Journal of Business, University of Chicago Press, vol. 51(4), pages 621-651, October.
    2. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nteukam T., Oberlain & Planchet, Frédéric & Thérond, Pierre-E., 2011. "Optimal strategies for hedging portfolios of unit-linked life insurance contracts with minimum death guarantee," Insurance: Mathematics and Economics, Elsevier, vol. 48(2), pages 161-175, March.
    2. Lokeshwar, Vikranth & Bharadwaj, Vikram & Jain, Shashi, 2022. "Explainable neural network for pricing and universal static hedging of contingent claims," Applied Mathematics and Computation, Elsevier, vol. 417(C).
    3. Tak Kuen Siu & Robert J. Elliott, 2019. "Hedging Options In A Doubly Markov-Modulated Financial Market Via Stochastic Flows," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-41, December.
    4. Jingtang Ma & Dongya Deng & Harry Zheng, 2016. "Convergence analysis and optimal strike choice for static hedges of general path-independent pay-offs," Quantitative Finance, Taylor & Francis Journals, vol. 16(4), pages 593-603, April.
    5. Kyungsub Lee & Byoung Ki Seo, 2021. "Analytic formula for option margin with liquidity costs under dynamic delta hedging," Papers 2103.15302, arXiv.org.
    6. Shuxin Guo & Qiang Liu, 2019. "The Black-Scholes-Merton dual equation," Papers 1912.10380, arXiv.org, revised May 2024.
    7. Carole Bernard & Junsen Tang, 2016. "Simplified Hedge For Path-Dependent Derivatives," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(07), pages 1-32, November.
    8. Philipp Mayer & Natalie Packham & Wolfgang Schmidt, 2015. "Static hedging under maturity mismatch," Finance and Stochastics, Springer, vol. 19(3), pages 509-539, July.
    9. Jingtang Ma & Dongya Deng & Harry Zheng, 2014. "A robust algorithm and convergence analysis for static replications of nonlinear payoffs," Papers 1406.5430, arXiv.org.
    10. Tim Leung & Matthew Lorig, 2016. "Optimal static quadratic hedging," Quantitative Finance, Taylor & Francis Journals, vol. 16(9), pages 1341-1355, September.
    11. Vikranth Lokeshwar Dhandapani & Shashi Jain, 2023. "Data-driven Approach for Static Hedging of Exchange Traded Options," Papers 2302.00728, arXiv.org, revised Jan 2024.
    12. Thomas Kokholm & Martin Stisen, 2015. "Joint pricing of VIX and SPX options with stochastic volatility and jump models," Journal of Risk Finance, Emerald Group Publishing Limited, vol. 16(1), pages 27-48, January.
    13. Xiang Meng, 2019. "Dynamic Mean-Variance Portfolio Optimisation," Papers 1907.03093, arXiv.org.
    14. Ivanova, Vesela & Puigvert Gutiérrez, Josep Maria, 2014. "Interest rate forecasts, state price densities and risk premium from Euribor options," Journal of Banking & Finance, Elsevier, vol. 48(C), pages 210-223.
    15. Peter Carr & Liuren Wu, 2014. "Static Hedging of Standard Options," Journal of Financial Econometrics, Oxford University Press, vol. 12(1), pages 3-46.
    16. Marins, Jaqueline Terra Moura & Vicente, José Valentim Machado, 2017. "Do the central bank actions reduce interest rate volatility?," Economic Modelling, Elsevier, vol. 65(C), pages 129-137.
    17. René Garcia & Richard Luger & Eric Renault, 2000. "Asymmetric Smiles, Leverage Effects and Structural Parameters," Working Papers 2000-57, Center for Research in Economics and Statistics.
    18. John Armstrong & Teemu Pennanen & Udomsak Rakwongwan, 2018. "Pricing Index Options By Static Hedging Under Finite Liquidity," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(06), pages 1-18, September.
    19. Barone-Adesi, Giovanni & Fusari, Nicola & Mira, Antonietta & Sala, Carlo, 2020. "Option market trading activity and the estimation of the pricing kernel: A Bayesian approach," Journal of Econometrics, Elsevier, vol. 216(2), pages 430-449.
    20. Hongzhong Zhang, 2018. "Stochastic Drawdowns," World Scientific Books, World Scientific Publishing Co. Pte. Ltd., number 10078, June.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2403.00139. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.