IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2306.05750.html
   My bibliography  Save this paper

Monte Carlo simulation for Barndorff-Nielsen and Shephard model under change of measure

Author

Listed:
  • Takuji Arai
  • Yuto Imai

Abstract

The Barndorff-Nielsen and Shephard model is a representative jump-type stochastic volatility model. Still, no method exists to compute option prices numerically for the non-martingale case with infinite active jumps. We develop two simulation methods for such a case under change of measure and conduct some numerical experiments.

Suggested Citation

  • Takuji Arai & Yuto Imai, 2023. "Monte Carlo simulation for Barndorff-Nielsen and Shephard model under change of measure," Papers 2306.05750, arXiv.org.
  • Handle: RePEc:arx:papers:2306.05750
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2306.05750
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Elisa Nicolato & Emmanouil Venardos, 2003. "Option Pricing in Stochastic Volatility Models of the Ornstein‐Uhlenbeck type," Mathematical Finance, Wiley Blackwell, vol. 13(4), pages 445-466, October.
    2. Takuji Arai & Yuto Imai & Ryoichi Suzuki, 2017. "Local risk-minimization for Barndorff-Nielsen and Shephard models," Finance and Stochastics, Springer, vol. 21(2), pages 551-592, April.
    3. Piergiacomo Sabino & Nicola Cufaro Petroni, 2022. "Fast simulation of tempered stable Ornstein–Uhlenbeck processes," Computational Statistics, Springer, vol. 37(5), pages 2517-2551, November.
    4. Ole E. Barndorff‐Nielsen & Neil Shephard, 2001. "Non‐Gaussian Ornstein–Uhlenbeck‐based models and some of their uses in financial economics," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 63(2), pages 167-241.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Takuji Arai & Yuto Imai, 2024. "Option pricing for Barndorff-Nielsen and Shephard model by supervised deep learning," Papers 2402.00445, arXiv.org.
    2. Takuji Arai, 2019. "Pricing and hedging of VIX options for Barndorff-Nielsen and Shephard models," Papers 1904.12260, arXiv.org.
    3. Takuji Arai, 2020. "Al\`os type decomposition formula for Barndorff-Nielsen and Shephard model," Papers 2005.07393, arXiv.org, revised Sep 2020.
    4. Fred Espen Benth & Martin Groth & Rodwell Kufakunesu, 2007. "Valuing Volatility and Variance Swaps for a Non-Gaussian Ornstein-Uhlenbeck Stochastic Volatility Model," Applied Mathematical Finance, Taylor & Francis Journals, vol. 14(4), pages 347-363.
    5. Piotr Szczepocki, 2020. "Application of iterated filtering to stochastic volatility models based on non-Gaussian Ornstein-Uhlenbeck process," Statistics in Transition New Series, Polish Statistical Association, vol. 21(2), pages 173-187, June.
    6. Ying Jiao & Chunhua Ma & Simone Scotti & Chao Zhou, 2018. "The Alpha-Heston Stochastic Volatility Model," Papers 1812.01914, arXiv.org.
    7. Finlay, Richard & Seneta, Eugene, 2012. "A Generalized Hyperbolic model for a risky asset with dependence," Statistics & Probability Letters, Elsevier, vol. 82(12), pages 2164-2169.
    8. Dilip Madan, 2009. "A tale of two volatilities," Review of Derivatives Research, Springer, vol. 12(3), pages 213-230, October.
    9. Habtemicael, Semere & SenGupta, Indranil, 2014. "Ornstein–Uhlenbeck processes for geophysical data analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 399(C), pages 147-156.
    10. Ying Jiao & Chunhua Ma & Simone Scotti & Chao Zhou, 2021. "The Alpha‐Heston stochastic volatility model," Mathematical Finance, Wiley Blackwell, vol. 31(3), pages 943-978, July.
    11. Masuda, H. & Yoshida, N., 2005. "Asymptotic expansion for Barndorff-Nielsen and Shephard's stochastic volatility model," Stochastic Processes and their Applications, Elsevier, vol. 115(7), pages 1167-1186, July.
    12. Gianluca Fusai & Ioannis Kyriakou, 2016. "General Optimized Lower and Upper Bounds for Discrete and Continuous Arithmetic Asian Options," Mathematics of Operations Research, INFORMS, vol. 41(2), pages 531-559, May.
    13. Creal, Drew D., 2008. "Analysis of filtering and smoothing algorithms for Lévy-driven stochastic volatility models," Computational Statistics & Data Analysis, Elsevier, vol. 52(6), pages 2863-2876, February.
    14. Laurent, Sébastien & Shi, Shuping, 2020. "Volatility estimation and jump detection for drift–diffusion processes," Journal of Econometrics, Elsevier, vol. 217(2), pages 259-290.
    15. Neil Shephard & Torben Andersen, 2008. "Stochastic Volatility: Origins and Overview," Economics Papers 2008-W04, Economics Group, Nuffield College, University of Oxford.
    16. Hubalek, Friedrich & Sgarra, Carlo, 2009. "On the Esscher transforms and other equivalent martingale measures for Barndorff-Nielsen and Shephard stochastic volatility models with jumps," Stochastic Processes and their Applications, Elsevier, vol. 119(7), pages 2137-2157, July.
    17. Cantia, Catalin & Tunaru, Radu, 2017. "A factor model for joint default probabilities. Pricing of CDS, index swaps and index tranches," Insurance: Mathematics and Economics, Elsevier, vol. 72(C), pages 21-35.
    18. Carl Lindberg, 2008. "The estimation of the Barndorff‐Nielsen and Shephard model from daily data based on measures of trading intensity," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 24(4), pages 277-289, July.
    19. Takuji Arai, 2019. "Pricing And Hedging Of Vix Options For Barndorff-Nielsen And Shephard Models," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(08), pages 1-26, December.
    20. Martino Bardi & Annalisa Cesaroni & Andrea Scotti, 2014. "Convergence in Multiscale Financial Models with Non-Gaussian Stochastic Volatility," Papers 1405.6514, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2306.05750. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.