IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2210.16991.html
   My bibliography  Save this paper

Non-Robustness of the Cluster-Robust Inference: with a Proposal of a New Robust Method

Author

Listed:
  • Yuya Sasaki
  • Yulong Wang

Abstract

The conventional cluster-robust (CR) standard errors may not be robust. They are vulnerable to data that contain a small number of large clusters. When a researcher uses the 51 states in the U.S. as clusters, the largest cluster (California) consists of about 10% of the total sample. Such a case in fact violates the assumptions under which the widely used CR methods are guaranteed to work. We formally show that the conventional CR methods fail if the distribution of cluster sizes follows a power law with exponent less than two. Besides the example of 51 state clusters, some examples are drawn from a list of recent original research articles published in a top journal. In light of these negative results about the existing CR methods, we propose a weighted CR (WCR) method as a simple fix. Simulation studies support our arguments that the WCR method is robust while the conventional CR methods are not.

Suggested Citation

  • Yuya Sasaki & Yulong Wang, 2022. "Non-Robustness of the Cluster-Robust Inference: with a Proposal of a New Robust Method," Papers 2210.16991, arXiv.org, revised Dec 2022.
  • Handle: RePEc:arx:papers:2210.16991
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2210.16991
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hersch, Joni, 1998. "Compensating Differentials for Gender-Specific Job Injury Risks," American Economic Review, American Economic Association, vol. 88(3), pages 598-627, June.
    2. MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023. "Cluster-robust inference: A guide to empirical practice," Journal of Econometrics, Elsevier, vol. 232(2), pages 272-299.
    3. Djogbenou, Antoine A. & MacKinnon, James G. & Nielsen, Morten Ørregaard, 2019. "Asymptotic theory and wild bootstrap inference with clustered errors," Journal of Econometrics, Elsevier, vol. 212(2), pages 393-412.
    4. Hansen, Bruce E. & Lee, Seojeong, 2019. "Asymptotic theory for clustered samples," Journal of Econometrics, Elsevier, vol. 210(2), pages 268-290.
    5. Livia Alfonsi & Oriana Bandiera & Vittorio Bassi & Robin Burgess & Imran Rasul & Munshi Sulaiman & Anna Vitali, 2020. "Tackling Youth Unemployment: Evidence From a Labor Market Experiment in Uganda," Econometrica, Econometric Society, vol. 88(6), pages 2369-2414, November.
    6. Hansen, Christian B., 2007. "Asymptotic properties of a robust variance matrix estimator for panel data when T is large," Journal of Econometrics, Elsevier, vol. 141(2), pages 597-620, December.
    7. Ruben Enikolopov & Alexey Makarin & Maria Petrova, 2020. "Social Media and Protest Participation: Evidence From Russia," Econometrica, Econometric Society, vol. 88(4), pages 1479-1514, July.
    8. Marianne Bertrand & Esther Duflo & Sendhil Mullainathan, 2004. "How Much Should We Trust Differences-In-Differences Estimates?," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 119(1), pages 249-275.
    9. A. Colin Cameron & Douglas L. Miller, 2015. "A Practitioner’s Guide to Cluster-Robust Inference," Journal of Human Resources, University of Wisconsin Press, vol. 50(2), pages 317-372.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Harold D. Chiang & Yuya Sasaki & Yulong Wang, 2023. "On the Inconsistency of Cluster-Robust Inference and How Subsampling Can Fix It," Papers 2308.10138, arXiv.org, revised Mar 2024.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023. "Cluster-robust inference: A guide to empirical practice," Journal of Econometrics, Elsevier, vol. 232(2), pages 272-299.
    2. MacKinnon, James G. & Nielsen, Morten Ørregaard & Webb, Matthew D., 2023. "Testing for the appropriate level of clustering in linear regression models," Journal of Econometrics, Elsevier, vol. 235(2), pages 2027-2056.
    3. Tom Boot & Gianmaria Niccodemi & Tom Wansbeek, 2023. "Unbiased estimation of the OLS covariance matrix when the errors are clustered," Empirical Economics, Springer, vol. 64(6), pages 2511-2533, June.
    4. Hwang, Jungbin, 2021. "Simple and trustworthy cluster-robust GMM inference," Journal of Econometrics, Elsevier, vol. 222(2), pages 993-1023.
    5. Wenjie Wang & Yichong Zhang, 2021. "Wild Bootstrap for Instrumental Variables Regressions with Weak and Few Clusters," Papers 2108.13707, arXiv.org, revised Jan 2024.
    6. Hansen, Bruce E. & Lee, Seojeong, 2019. "Asymptotic theory for clustered samples," Journal of Econometrics, Elsevier, vol. 210(2), pages 268-290.
    7. Doko Tchatoka, Firmin & Wang, Wenjie, 2021. "Size-corrected Bootstrap Test after Pretesting for Exogeneity with Heteroskedastic or Clustered Data," MPRA Paper 110899, University Library of Munich, Germany.
    8. James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2023. "Leverage, influence, and the jackknife in clustered regression models: Reliable inference using summclust," Stata Journal, StataCorp LP, vol. 23(4), pages 942-982, December.
    9. James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2021. "Wild Bootstrap and Asymptotic Inference With Multiway Clustering," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(2), pages 505-519, March.
    10. Matthew D. Webb, 2023. "Reworking wild bootstrap‐based inference for clustered errors," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 56(3), pages 839-858, August.
    11. Djogbenou, Antoine A. & MacKinnon, James G. & Nielsen, Morten Ørregaard, 2019. "Asymptotic theory and wild bootstrap inference with clustered errors," Journal of Econometrics, Elsevier, vol. 212(2), pages 393-412.
    12. James G. MacKinnon & Matthew D. Webb, 2020. "When and How to Deal with Clustered Errors in Regression Models," Working Paper 1421, Economics Department, Queen's University.
    13. Hagemann, Andreas, 2019. "Placebo inference on treatment effects when the number of clusters is small," Journal of Econometrics, Elsevier, vol. 213(1), pages 190-209.
    14. James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2023. "Fast and reliable jackknife and bootstrap methods for cluster‐robust inference," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 38(5), pages 671-694, August.
    15. David Roodman & James G. MacKinnon & Morten Ørregaard Nielsen & Matthew D. Webb, 2019. "Fast and wild: Bootstrap inference in Stata using boottest," Stata Journal, StataCorp LP, vol. 19(1), pages 4-60, March.
    16. James G. MacKinnon, 2019. "How cluster‐robust inference is changing applied econometrics," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 52(3), pages 851-881, August.
    17. Laurent Davezies & Xavier D'Haultfoeuille & Yannick Guyonvarch, 2018. "Asymptotic results under multiway clustering," Papers 1807.07925, arXiv.org, revised Aug 2018.
    18. Federico Bugni & Ivan Canay & Azeem Shaikh & Max Tabord-Meehan, 2022. "Inference for Cluster Randomized Experiments with Non-ignorable Cluster Sizes," Papers 2204.08356, arXiv.org, revised Apr 2024.
    19. A. Colin Cameron & Douglas L. Miller, 2010. "Robust Inference with Clustered Data," Working Papers 106, University of California, Davis, Department of Economics.
    20. Wang, Wenjie, 2021. "Wild Bootstrap for Instrumental Variables Regression with Weak Instruments and Few Clusters," MPRA Paper 106227, University Library of Munich, Germany.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2210.16991. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.