IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2209.05089.html
   My bibliography  Save this paper

Solidarity in natural gas storage: A potential allocation mechanism of stored quantities among several players during times of crisis

Author

Listed:
  • D'avid Csercsik
  • Anne Neumann

Abstract

The recently experienced disruptions in the EU's energy supply pointed out that supply crises pose a real thread and the member states must be better prepared do deal with the related challenges. According to the current practice, member states fill their gas storages independently, while it is not clear how solidarity could be put into practice in the future, i.e. how the accumulated reserves of one or more members may be potentially redistributed to help others in need. In this paper we propose some possible guidelines for a potential solidarity framework, and formalize a game-theoretic model in order to capture the basic features of the problem, considering the related uncertainty of the future conditions related to gas storage levels and possible transmission bottlenecks as well. The proposed mechanism of supply-security related cooperation is based on voluntary participation, and may contribute to the more efficient utilization of storage capacities. Via the computational model we demonstrate the operation of the proposed framework on a simple example and show that under the assumption of risk-averse participants, the concept exhibits potential.

Suggested Citation

  • D'avid Csercsik & Anne Neumann, 2022. "Solidarity in natural gas storage: A potential allocation mechanism of stored quantities among several players during times of crisis," Papers 2209.05089, arXiv.org, revised Aug 2023.
  • Handle: RePEc:arx:papers:2209.05089
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2209.05089
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Hubert Franz & Cobanli Onur, 2015. "Pipeline Power: A Case Study of Strategic Network Investments," Review of Network Economics, De Gruyter, vol. 14(2), pages 75-110, June.
    2. Acerbi, Carlo & Tasche, Dirk, 2002. "On the coherence of expected shortfall," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1487-1503, July.
    3. Roberto Roson & Franz Hubert, 2015. "Bargaining Power and Value Sharing in Distribution Networks: A Cooperative Game Theory Approach," Networks and Spatial Economics, Springer, vol. 15(1), pages 71-87, March.
    4. Alexandre Adam & Mohamed Houkari & Jean-Paul Laurent, 2008. "Spectral risk measures and portfolio selection," Post-Print hal-03676385, HAL.
    5. Adam, Alexandre & Houkari, Mohamed & Laurent, Jean-Paul, 2008. "Spectral risk measures and portfolio selection," Journal of Banking & Finance, Elsevier, vol. 32(9), pages 1870-1882, September.
    6. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    7. Dávid Csercsik & Balázs Sziklai, 2015. "Traffic routing oligopoly," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 23(4), pages 743-762, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Saad Balhasan & Mohammed Alnahhal & Shahrul Shawan & Bashir Salah & Waqas Saleem & Mosab I. Tabash, 2022. "Optimization of Exploration and Production Sharing Agreements Using the Maxi-Min and Nash Solutions," Energies, MDPI, vol. 15(23), pages 1-19, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brandtner, Mario & Kürsten, Wolfgang & Rischau, Robert, 2018. "Entropic risk measures and their comparative statics in portfolio selection: Coherence vs. convexity," European Journal of Operational Research, Elsevier, vol. 264(2), pages 707-716.
    2. Brandtner, Mario & Kürsten, Wolfgang & Rischau, Robert, 2020. "Beyond expected utility: Subjective risk aversion and optimal portfolio choice under convex shortfall risk measures," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1114-1126.
    3. Brandtner, Mario & Kürsten, Wolfgang, 2014. "Decision making with Conditional Value-at-Risk and spectral risk measures: The problem of comparative risk aversion," VfS Annual Conference 2014 (Hamburg): Evidence-based Economic Policy 100615, Verein für Socialpolitik / German Economic Association.
    4. Jing Li & Mingxin Xu, 2013. "Optimal Dynamic Portfolio with Mean-CVaR Criterion," Risks, MDPI, vol. 1(3), pages 1-29, November.
    5. Chen, Zhiping & Wang, Yi, 2008. "Two-sided coherent risk measures and their application in realistic portfolio optimization," Journal of Banking & Finance, Elsevier, vol. 32(12), pages 2667-2673, December.
    6. Mario Brandtner, 2016. "Spektrale Risikomaße: Konzeption, betriebswirtschaftliche Anwendungen und Fallstricke," Management Review Quarterly, Springer, vol. 66(2), pages 75-115, April.
    7. Brandtner, Mario, 2013. "Conditional Value-at-Risk, spectral risk measures and (non-)diversification in portfolio selection problems – A comparison with mean–variance analysis," Journal of Banking & Finance, Elsevier, vol. 37(12), pages 5526-5537.
    8. Brandtner, Mario & Kürsten, Wolfgang, 2015. "Decision making with Expected Shortfall and spectral risk measures: The problem of comparative risk aversion," Journal of Banking & Finance, Elsevier, vol. 58(C), pages 268-280.
    9. Wentao Hu & Cuixia Chen & Yufeng Shi & Ze Chen, 2022. "A Tail Measure With Variable Risk Tolerance: Application in Dynamic Portfolio Insurance Strategy," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 831-874, June.
    10. S. Geissel & H. Graf & J. Herbinger & F. T. Seifried, 2022. "Portfolio optimization with optimal expected utility risk measures," Annals of Operations Research, Springer, vol. 309(1), pages 59-77, February.
    11. Omid Momen & Akbar Esfahanipour & Abbas Seifi, 2020. "A robust behavioral portfolio selection: model with investor attitudes and biases," Operational Research, Springer, vol. 20(1), pages 427-446, March.
    12. Weiping Wu & Yu Lin & Jianjun Gao & Ke Zhou, 2023. "Mean-variance hybrid portfolio optimization with quantile-based risk measure," Papers 2303.15830, arXiv.org, revised Apr 2023.
    13. Brandtner, Mario, 2018. "Expected Shortfall, spectral risk measures, and the aggravating effect of background risk, or: risk vulnerability and the problem of subadditivity," Journal of Banking & Finance, Elsevier, vol. 89(C), pages 138-149.
    14. Wächter, Hans Peter & Mazzoni, Thomas, 2013. "Consistent modeling of risk averse behavior with spectral risk measures," European Journal of Operational Research, Elsevier, vol. 229(2), pages 487-495.
    15. James Ming Chen, 2018. "On Exactitude in Financial Regulation: Value-at-Risk, Expected Shortfall, and Expectiles," Risks, MDPI, vol. 6(2), pages 1-28, June.
    16. Taras Bodnar & Mathias Lindholm & Erik Thorsén & Joanna Tyrcha, 2021. "Quantile-based optimal portfolio selection," Computational Management Science, Springer, vol. 18(3), pages 299-324, July.
    17. Sorwar, Ghulam & Dowd, Kevin, 2010. "Estimating financial risk measures for options," Journal of Banking & Finance, Elsevier, vol. 34(8), pages 1982-1992, August.
    18. Nathan Lassance & Frédéric Vrins, 2021. "Minimum Rényi entropy portfolios," Annals of Operations Research, Springer, vol. 299(1), pages 23-46, April.
    19. Martin Herdegen & Nazem Khan, 2022. "Mean‐ρ$\rho$ portfolio selection and ρ$\rho$‐arbitrage for coherent risk measures," Mathematical Finance, Wiley Blackwell, vol. 32(1), pages 226-272, January.
    20. H. Fink & S. Geissel & J. Herbinger & F. T. Seifried, 2019. "Portfolio Optimization with Optimal Expected Utility Risk Measures," Working Paper Series 2019-07, University of Trier, Research Group Quantitative Finance and Risk Analysis.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2209.05089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.