IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2209.00197.html
   My bibliography  Save this paper

Switchback Experiments under Geometric Mixing

Author

Listed:
  • Yuchen Hu
  • Stefan Wager

Abstract

The switchback is an experimental design that measures treatment effects by repeatedly turning an intervention on and off for a whole system. Switchback experiments are a robust way to overcome cross-unit spillover effects; however, they are vulnerable to bias from temporal carryovers. In this paper, we consider properties of switchback experiments in Markovian systems that mix at a geometric rate. We find that, in this setting, standard switchback designs suffer considerably from carryover bias: Their estimation error decays as $T^{-1/3}$ in terms of the experiment horizon $T$, whereas in the absence of carryovers a faster rate of $T^{-1/2}$ would have been possible. We also show, however, that judicious use of burn-in periods can considerably improve the situation, and enables errors that decay as $\log(T)^{1/2}T^{-1/2}$. Our formal results are mirrored in an empirical evaluation.

Suggested Citation

  • Yuchen Hu & Stefan Wager, 2022. "Switchback Experiments under Geometric Mixing," Papers 2209.00197, arXiv.org, revised Apr 2024.
  • Handle: RePEc:arx:papers:2209.00197
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2209.00197
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Charles F. Manski, 2013. "Identification of treatment response with social interactions," Econometrics Journal, Royal Economic Society, vol. 16(1), pages 1-23, February.
    2. Michael P. Leung, 2022. "Causal Inference Under Approximate Neighborhood Interference," Econometrica, Econometric Society, vol. 90(1), pages 267-293, January.
    3. Xinran Li & Peng Ding, 2017. "General Forms of Finite Population Central Limit Theorems with Applications to Causal Inference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 112(520), pages 1759-1769, October.
    4. Imbens,Guido W. & Rubin,Donald B., 2015. "Causal Inference for Statistics, Social, and Biomedical Sciences," Cambridge Books, Cambridge University Press, number 9780521885881.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Luofeng Liao & Christian Kroer, 2023. "Statistical Inference and A/B Testing for First-Price Pacing Equilibria," Papers 2301.02276, arXiv.org, revised Jun 2023.
    2. Evan Munro & David Jones & Jennifer Brennan & Roland Nelet & Vahab Mirrokni & Jean Pouget-Abadie, 2023. "Causal Estimation of User Learning in Personalized Systems," Papers 2306.00485, arXiv.org.
    3. Nian Si, 2023. "Tackling Interference Induced by Data Training Loops in A/B Tests: A Weighted Training Approach," Papers 2310.17496, arXiv.org, revised Apr 2024.
    4. Shan Huang & Chen Wang & Yuan Yuan & Jinglong Zhao & Jingjing Zhang, 2023. "Estimating Effects of Long-Term Treatments," Papers 2308.08152, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haoge Chang, 2023. "Design-based Estimation Theory for Complex Experiments," Papers 2311.06891, arXiv.org.
    2. Michael P. Leung, 2021. "Rate-Optimal Cluster-Randomized Designs for Spatial Interference," Papers 2111.04219, arXiv.org, revised Sep 2022.
    3. Tadao Hoshino & Takahide Yanagi, 2021. "Causal Inference with Noncompliance and Unknown Interference," Papers 2108.07455, arXiv.org, revised Oct 2023.
    4. Tadao Hoshino, 2021. "Estimating a Continuous Treatment Model with Spillovers: A Control Function Approach," Papers 2112.15114, arXiv.org, revised Jan 2023.
    5. Clément de Chaisemartin, 2022. "Trading-off Bias and Variance in Stratified Experiments and in Staggered Adoption Designs, Under a Boundedness Condition on the Magnitude of the Treatment Effect," Working Papers hal-03873919, HAL.
    6. Julius Owusu, 2023. "Randomization Inference of Heterogeneous Treatment Effects under Network Interference," Papers 2308.00202, arXiv.org, revised Jan 2024.
    7. Hao, Shiming, 2021. "True structure change, spurious treatment effect? A novel approach to disentangle treatment effects from structure changes," MPRA Paper 108679, University Library of Munich, Germany.
    8. Susan Athey & Dean Eckles & Guido W. Imbens, 2018. "Exact p-Values for Network Interference," Journal of the American Statistical Association, Taylor & Francis Journals, vol. 113(521), pages 230-240, January.
    9. Denis Fougère & Nicolas Jacquemet, 2020. "Policy Evaluation Using Causal Inference Methods," SciencePo Working papers Main hal-03455978, HAL.
    10. Peter Z. Schochet, 2018. "Design-Based Estimators for Average Treatment Effects for Multi-Armed RCTs," Journal of Educational and Behavioral Statistics, , vol. 43(5), pages 568-593, October.
    11. Iavor Bojinov & David Simchi-Levi & Jinglong Zhao, 2023. "Design and Analysis of Switchback Experiments," Management Science, INFORMS, vol. 69(7), pages 3759-3777, July.
    12. Chabé-Ferret, Sylvain & Reynaud, Arnaud & Tène, Eva, 2021. "Water Quality, Policy Diffusion Effects and Farmers’ Behavior," TSE Working Papers 21-1229, Toulouse School of Economics (TSE).
    13. Jiafeng Chen, 2021. "Nonparametric Treatment Effect Identification in School Choice," Papers 2112.03872, arXiv.org, revised Oct 2023.
    14. Peter Z. Schochet, 2020. "Analyzing Grouped Administrative Data for RCTs Using Design-Based Methods," Journal of Educational and Behavioral Statistics, , vol. 45(1), pages 32-57, February.
    15. Tadao Hoshino & Takahide Yanagi, 2023. "Randomization Test for the Specification of Interference Structure," Papers 2301.05580, arXiv.org, revised Dec 2023.
    16. Iavor Bojinov & Ashesh Rambachan & Neil Shephard, 2021. "Panel experiments and dynamic causal effects: A finite population perspective," Quantitative Economics, Econometric Society, vol. 12(4), pages 1171-1196, November.
    17. Stefan Wager & Kuang Xu, 2021. "Experimenting in Equilibrium," Management Science, INFORMS, vol. 67(11), pages 6694-6715, November.
    18. Hannah Li & Geng Zhao & Ramesh Johari & Gabriel Y. Weintraub, 2021. "Interference, Bias, and Variance in Two-Sided Marketplace Experimentation: Guidance for Platforms," Papers 2104.12222, arXiv.org.
    19. Peter L. Cohen & Colin B. Fogarty, 2022. "Gaussian prepivoting for finite population causal inference," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 84(2), pages 295-320, April.
    20. Davide Viviano & Lihua Lei & Guido Imbens & Brian Karrer & Okke Schrijvers & Liang Shi, 2023. "Causal clustering: design of cluster experiments under network interference," Papers 2310.14983, arXiv.org, revised Jan 2024.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2209.00197. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.