IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2108.05066.html
   My bibliography  Save this paper

Risk Concentration and the Mean-Expected Shortfall Criterion

Author

Listed:
  • Xia Han
  • Bin Wang
  • Ruodu Wang
  • Qinyu Wu

Abstract

Expected Shortfall (ES, also known as CVaR) is the most important coherent risk measure in finance, insurance, risk management, and engineering. Recently, Wang and Zitikis (2021) put forward four economic axioms for portfolio risk assessment and provide the first economic axiomatic foundation for the family of ES. In particular, the axiom of no reward for concentration (NRC) is arguably quite strong, which imposes an additive form of the risk measure on portfolios with a certain dependence structure. We move away from the axiom of NRC by introducing the notion of concentration aversion, which does not impose any specific form of the risk measure. It turns out that risk measures with concentration aversion are functions of ES and the expectation. Together with the other three standard axioms of monotonicity, translation invariance and lower semicontinuity, concentration aversion uniquely characterizes the family of ES. In addition, we establish an axiomatic foundation for the problem of mean-ES portfolio selection and new explicit formulas for convex and consistent risk measures. Finally, we provide an economic justification for concentration aversion via a few axioms on the attitude of a regulator towards dependence structures.

Suggested Citation

  • Xia Han & Bin Wang & Ruodu Wang & Qinyu Wu, 2021. "Risk Concentration and the Mean-Expected Shortfall Criterion," Papers 2108.05066, arXiv.org, revised Apr 2022.
  • Handle: RePEc:arx:papers:2108.05066
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2108.05066
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. R. Rockafellar & Stan Uryasev & Michael Zabarankin, 2006. "Generalized deviations in risk analysis," Finance and Stochastics, Springer, vol. 10(1), pages 51-74, January.
    2. Basak, Suleyman & Shapiro, Alexander, 2001. "Value-at-Risk-Based Risk Management: Optimal Policies and Asset Prices," The Review of Financial Studies, Society for Financial Studies, vol. 14(2), pages 371-405.
    3. Yaari, Menahem E, 1987. "The Dual Theory of Choice under Risk," Econometrica, Econometric Society, vol. 55(1), pages 95-115, January.
    4. Steven Kou & Xianhua Peng, 2016. "On the Measurement of Economic Tail Risk," Operations Research, INFORMS, vol. 64(5), pages 1056-1072, October.
    5. Furman, Edward & Wang, Ruodu & Zitikis, Ričardas, 2017. "Gini-type measures of risk and variability: Gini shortfall, capital allocations, and heavy-tailed risks," Journal of Banking & Finance, Elsevier, vol. 83(C), pages 70-84.
    6. Christopher P. Chambers, 2009. "An Axiomatization Of Quantiles On The Domain Of Distribution Functions," Mathematical Finance, Wiley Blackwell, vol. 19(2), pages 335-342, April.
    7. Schmeidler, David, 1989. "Subjective Probability and Expected Utility without Additivity," Econometrica, Econometric Society, vol. 57(3), pages 571-587, May.
    8. Philippe Artzner & Freddy Delbaen & Jean‐Marc Eber & David Heath, 1999. "Coherent Measures of Risk," Mathematical Finance, Wiley Blackwell, vol. 9(3), pages 203-228, July.
    9. Rothschild, Michael & Stiglitz, Joseph E., 1970. "Increasing risk: I. A definition," Journal of Economic Theory, Elsevier, vol. 2(3), pages 225-243, September.
    10. Paul Embrechts & Alexander Schied & Ruodu Wang, 2018. "Robustness in the Optimization of Risk Measures," Papers 1809.09268, arXiv.org, revised Feb 2021.
    11. Ruodu Wang & Yunran Wei, 2020. "Risk functionals with convex level sets," Mathematical Finance, Wiley Blackwell, vol. 30(4), pages 1337-1367, October.
    12. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    13. Itzhak Gilboa, 2004. "Uncertainty in Economic Theory," Post-Print hal-00756317, HAL.
    14. Hadar, Josef & Russell, William R, 1969. "Rules for Ordering Uncertain Prospects," American Economic Review, American Economic Association, vol. 59(1), pages 25-34, March.
    15. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    16. Xue Dong He & Xianhua Peng, 2017. "Surplus-Invariant, Law-Invariant, and Conic Acceptance Sets Must be the Sets Induced by Value-at-Risk," Papers 1707.05596, arXiv.org, revised Jan 2018.
    17. Paul Embrechts & Tiantian Mao & Qiuqi Wang & Ruodu Wang, 2021. "Bayes risk, elicitability, and the Expected Shortfall," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1190-1217, October.
    18. Bellini, Fabio & Klar, Bernhard & Müller, Alfred & Rosazza Gianin, Emanuela, 2014. "Generalized quantiles as risk measures," Insurance: Mathematics and Economics, Elsevier, vol. 54(C), pages 41-48.
    19. Hans Föllmer & Alexander Schied, 2002. "Convex measures of risk and trading constraints," Finance and Stochastics, Springer, vol. 6(4), pages 429-447.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ruodu Wang & Ričardas Zitikis, 2021. "An Axiomatic Foundation for the Expected Shortfall," Management Science, INFORMS, vol. 67(3), pages 1413-1429, March.
    2. Xia Han & Ruodu Wang & Xun Yu Zhou, 2022. "Choquet regularization for reinforcement learning," Papers 2208.08497, arXiv.org.
    3. Ruodu Wang & Yunran Wei & Gordon E. Willmot, 2020. "Characterization, Robustness, and Aggregation of Signed Choquet Integrals," Mathematics of Operations Research, INFORMS, vol. 45(3), pages 993-1015, August.
    4. Xia Han & Liyuan Lin & Ruodu Wang, 2022. "Diversification quotients: Quantifying diversification via risk measures," Papers 2206.13679, arXiv.org, revised Mar 2024.
    5. Samuel Solgon Santos & Marcelo Brutti Righi & Eduardo de Oliveira Horta, 2022. "The limitations of comonotonic additive risk measures: a literature review," Papers 2212.13864, arXiv.org, revised Jan 2024.
    6. Yi Shen & Zachary Van Oosten & Ruodu Wang, 2024. "Partially Law-Invariant Risk Measures," Papers 2401.17265, arXiv.org.
    7. Brandtner, Mario & Kürsten, Wolfgang & Rischau, Robert, 2018. "Entropic risk measures and their comparative statics in portfolio selection: Coherence vs. convexity," European Journal of Operational Research, Elsevier, vol. 264(2), pages 707-716.
    8. Hirbod Assa & Peng Liu, 2024. "Factor risk measures," Papers 2404.08475, arXiv.org.
    9. Cillo, Alessandra & Delquié, Philippe, 2014. "Mean-risk analysis with enhanced behavioral content," European Journal of Operational Research, Elsevier, vol. 239(3), pages 764-775.
    10. Marcelo Brutti Righi & Fernanda Maria Muller & Marlon Ruoso Moresco, 2022. "A risk measurement approach from risk-averse stochastic optimization of score functions," Papers 2208.14809, arXiv.org, revised May 2023.
    11. Jean-Gabriel Lauzier & Liyuan Lin & Ruodu Wang, 2023. "Risk sharing, measuring variability, and distortion riskmetrics," Papers 2302.04034, arXiv.org.
    12. Paul Embrechts & Tiantian Mao & Qiuqi Wang & Ruodu Wang, 2021. "Bayes risk, elicitability, and the Expected Shortfall," Mathematical Finance, Wiley Blackwell, vol. 31(4), pages 1190-1217, October.
    13. Markus Huggenberger & Peter Albrecht, 2022. "Risk pooling and solvency regulation: A policyholder's perspective," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 89(4), pages 907-950, December.
    14. Mario Brandtner, 2016. "Spektrale Risikomaße: Konzeption, betriebswirtschaftliche Anwendungen und Fallstricke," Management Review Quarterly, Springer, vol. 66(2), pages 75-115, April.
    15. Xia Han & Ruodu Wang & Qinyu Wu, 2023. "Monotonic mean-deviation risk measures," Papers 2312.01034, arXiv.org.
    16. Yuanying Guan & Zhanyi Jiao & Ruodu Wang, 2022. "A reverse ES (CVaR) optimization formula," Papers 2203.02599, arXiv.org, revised May 2023.
    17. Marcelo Brutti Righi, 2018. "A theory for combinations of risk measures," Papers 1807.01977, arXiv.org, revised May 2023.
    18. Righi, Marcelo Brutti & Borenstein, Denis, 2018. "A simulation comparison of risk measures for portfolio optimization," Finance Research Letters, Elsevier, vol. 24(C), pages 105-112.
    19. Albrecht, Peter & Huggenberger, Markus, 2017. "The fundamental theorem of mutual insurance," Insurance: Mathematics and Economics, Elsevier, vol. 75(C), pages 180-188.
    20. Dan A. Iancu & Marek Petrik & Dharmashankar Subramanian, 2015. "Tight Approximations of Dynamic Risk Measures," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 655-682, March.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2108.05066. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.