IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2104.01437.html
   My bibliography  Save this paper

Monte Carlo Simulation of SDEs using GANs

Author

Listed:
  • Jorino van Rhijn
  • Cornelis W. Oosterlee
  • Lech A. Grzelak
  • Shuaiqiang Liu

Abstract

Generative adversarial networks (GANs) have shown promising results when applied on partial differential equations and financial time series generation. We investigate if GANs can also be used to approximate one-dimensional Ito stochastic differential equations (SDEs). We propose a scheme that approximates the path-wise conditional distribution of SDEs for large time steps. Standard GANs are only able to approximate processes in distribution, yielding a weak approximation to the SDE. A conditional GAN architecture is proposed that enables strong approximation. We inform the discriminator of this GAN with the map between the prior input to the generator and the corresponding output samples, i.e. we introduce a `supervised GAN'. We compare the input-output map obtained with the standard GAN and supervised GAN and show experimentally that the standard GAN may fail to provide a path-wise approximation. The GAN is trained on a dataset obtained with exact simulation. The architecture was tested on geometric Brownian motion (GBM) and the Cox-Ingersoll-Ross (CIR) process. The supervised GAN outperformed the Euler and Milstein schemes in strong error on a discretisation with large time steps. It also outperformed the standard conditional GAN when approximating the conditional distribution. We also demonstrate how standard GANs may give rise to non-parsimonious input-output maps that are sensitive to perturbations, which motivates the need for constraints and regularisation on GAN generators.

Suggested Citation

  • Jorino van Rhijn & Cornelis W. Oosterlee & Lech A. Grzelak & Shuaiqiang Liu, 2021. "Monte Carlo Simulation of SDEs using GANs," Papers 2104.01437, arXiv.org.
  • Handle: RePEc:arx:papers:2104.01437
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2104.01437
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Magnus Wiese & Robert Knobloch & Ralf Korn & Peter Kretschmer, 2020. "Quant GANs: deep generation of financial time series," Quantitative Finance, Taylor & Francis Journals, vol. 20(9), pages 1419-1440, September.
    2. Philipp Grohs & Fabian Hornung & Arnulf Jentzen & Philippe von Wurstemberger, 2018. "A proof that artificial neural networks overcome the curse of dimensionality in the numerical approximation of Black-Scholes partial differential equations," Papers 1809.02362, arXiv.org, revised Jan 2023.
    3. Christa Cuchiero & Wahid Khosrawi & Josef Teichmann, 2020. "A Generative Adversarial Network Approach to Calibration of Local Stochastic Volatility Models," Risks, MDPI, vol. 8(4), pages 1-31, September.
    4. Mark Broadie & Özgür Kaya, 2006. "Exact Simulation of Stochastic Volatility and Other Affine Jump Diffusion Processes," Operations Research, INFORMS, vol. 54(2), pages 217-231, April.
    5. Christa Cuchiero & Wahid Khosrawi & Josef Teichmann, 2020. "A generative adversarial network approach to calibration of local stochastic volatility models," Papers 2005.02505, arXiv.org, revised Sep 2020.
    6. Simard, Richard & L'Ecuyer, Pierre, 2011. "Computing the Two-Sided Kolmogorov-Smirnov Distribution," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 39(i11).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Magnus Wiese & Ben Wood & Alexandre Pachoud & Ralf Korn & Hans Buehler & Phillip Murray & Lianjun Bai, 2021. "Multi-Asset Spot and Option Market Simulation," Papers 2112.06823, arXiv.org.
    2. Beatrice Acciaio & Anastasis Kratsios & Gudmund Pammer, 2022. "Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer," Papers 2201.13094, arXiv.org, revised Mar 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Blanka Horvath & Josef Teichmann & Žan Žurič, 2021. "Deep Hedging under Rough Volatility," Risks, MDPI, vol. 9(7), pages 1-20, July.
    2. Blanka Horvath & Josef Teichmann & Zan Zuric, 2021. "Deep Hedging under Rough Volatility," Papers 2102.01962, arXiv.org.
    3. Beatrice Acciaio & Anastasis Kratsios & Gudmund Pammer, 2022. "Designing Universal Causal Deep Learning Models: The Geometric (Hyper)Transformer," Papers 2201.13094, arXiv.org, revised Mar 2023.
    4. Lukas Gonon, 2022. "Deep neural network expressivity for optimal stopping problems," Papers 2210.10443, arXiv.org.
    5. Haoyang Cao & Xin Guo, 2021. "Generative Adversarial Network: Some Analytical Perspectives," Papers 2104.12210, arXiv.org, revised Sep 2021.
    6. Marc Sabate-Vidales & David v{S}iv{s}ka & Lukasz Szpruch, 2020. "Solving path dependent PDEs with LSTM networks and path signatures," Papers 2011.10630, arXiv.org.
    7. Lukas Gonon, 2021. "Random feature neural networks learn Black-Scholes type PDEs without curse of dimensionality," Papers 2106.08900, arXiv.org.
    8. Magnus Wiese & Phillip Murray, 2022. "Risk-Neutral Market Simulation," Papers 2202.13996, arXiv.org.
    9. Vedant Choudhary & Sebastian Jaimungal & Maxime Bergeron, 2023. "FuNVol: A Multi-Asset Implied Volatility Market Simulator using Functional Principal Components and Neural SDEs," Papers 2303.00859, arXiv.org, revised Dec 2023.
    10. Hans Buhler & Blanka Horvath & Terry Lyons & Imanol Perez Arribas & Ben Wood, 2020. "A Data-driven Market Simulator for Small Data Environments," Papers 2006.14498, arXiv.org.
    11. Sebastian Jaimungal, 2022. "Reinforcement learning and stochastic optimisation," Finance and Stochastics, Springer, vol. 26(1), pages 103-129, January.
    12. Christa Cuchiero & Luca Di Persio & Francesco Guida & Sara Svaluto-Ferro, 2022. "Measure-valued processes for energy markets," Papers 2210.09331, arXiv.org.
    13. Francesca Biagini & Lukas Gonon & Thomas Reitsam, 2021. "Neural network approximation for superhedging prices," Papers 2107.14113, arXiv.org.
    14. Nelson Vadori, 2022. "Calibration of Derivative Pricing Models: a Multi-Agent Reinforcement Learning Perspective," Papers 2203.06865, arXiv.org, revised Oct 2023.
    15. Fred Espen Benth & Nils Detering & Silvia Lavagnini, 2021. "Accuracy of deep learning in calibrating HJM forward curves," Digital Finance, Springer, vol. 3(3), pages 209-248, December.
    16. Fred Espen Benth & Nils Detering & Silvia Lavagnini, 2020. "Accuracy of Deep Learning in Calibrating HJM Forward Curves," Papers 2006.01911, arXiv.org, revised May 2021.
    17. Patryk Gierjatowicz & Marc Sabate-Vidales & David v{S}iv{s}ka & Lukasz Szpruch & v{Z}an v{Z}uriv{c}, 2020. "Robust pricing and hedging via neural SDEs," Papers 2007.04154, arXiv.org.
    18. Ariel Neufeld & Philipp Schmocker, 2022. "Chaotic Hedging with Iterated Integrals and Neural Networks," Papers 2209.10166, arXiv.org, revised Feb 2023.
    19. Christa Cuchiero & Philipp Schmocker & Josef Teichmann, 2023. "Global universal approximation of functional input maps on weighted spaces," Papers 2306.03303, arXiv.org, revised Feb 2024.
    20. Christa Cuchiero & Sara Svaluto-Ferro & Josef Teichmann, 2023. "Signature SDEs from an affine and polynomial perspective," Papers 2302.01362, arXiv.org.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2104.01437. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.