IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2101.12262.html
   My bibliography  Save this paper

Measuring non-exchangeable tail dependence using tail copulas

Author

Listed:
  • Takaaki Koike
  • Shogo Kato
  • Marius Hofert

Abstract

Quantifying tail dependence is an important issue in insurance and risk management. The prevalent tail dependence coefficient (TDC), however, is known to underestimate the degree of tail dependence and it does not capture non-exchangeable tail dependence since it evaluates the limiting tail probability only along the main diagonal. To overcome these issues, two novel tail dependence measures called the maximal tail concordance measure (MTCM) and the average tail concordance measure (ATCM) are proposed. Both measures are constructed based on tail copulas and possess clear probabilistic interpretations in that the MTCM evaluates the largest limiting probability among all comparable rectangles in the tail, and the ATCM is a normalized average of these limiting probabilities. In contrast to the TDC, the proposed measures can capture non-exchangeable tail dependence. Analytical forms of the proposed measures are also derived for various copulas. A real data analysis reveals striking tail dependence and tail non-exchangeability of the return series of stock indices, particularly in periods of financial distress.

Suggested Citation

  • Takaaki Koike & Shogo Kato & Marius Hofert, 2021. "Measuring non-exchangeable tail dependence using tail copulas," Papers 2101.12262, arXiv.org, revised Feb 2023.
  • Handle: RePEc:arx:papers:2101.12262
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2101.12262
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Asimit, Alexandru V. & Gerrard, Russell & Hou, Yanxi & Peng, Liang, 2016. "Tail dependence measure for examining financial extreme co-movements," Journal of Econometrics, Elsevier, vol. 194(2), pages 330-348.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Paramahansa Pramanik, 2024. "Dependence on Tail Copula," J, MDPI, vol. 7(2), pages 1-26, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Arnold Polanski & Evarist Stoja & Ching‐Wai (Jeremy) Chiu, 2021. "Tail risk interdependence," International Journal of Finance & Economics, John Wiley & Sons, Ltd., vol. 26(4), pages 5499-5511, October.
    2. Furman, Edward & Kuznetsov, Alexey & Su, Jianxi & Zitikis, Ričardas, 2016. "Tail dependence of the Gaussian copula revisited," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 97-103.
    3. Jalan, Akanksha & Matkovskyy, Roman & Yarovaya, Larisa, 2021. "“Shiny” crypto assets: A systemic look at gold-backed cryptocurrencies during the COVID-19 pandemic," International Review of Financial Analysis, Elsevier, vol. 78(C).
    4. Hou, Yanxi & Wang, Xing, 2019. "Nonparametric inference for distortion risk measures on tail regions," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 92-110.
    5. Oliver R. Cutbill & Rami V. Tabri, 2022. "The Impossibility of Testing for Dependence Using Kendall’s Ƭ Under Missing Data of Unknown Form," Working Papers 2022-03, University of Sydney, School of Economics.
    6. Qin, Xiao & Zhou, Chen, 2021. "Systemic risk allocation using the asymptotic marginal expected shortfall," Journal of Banking & Finance, Elsevier, vol. 126(C).
    7. Hu, Genhua & Fan, Gang-Zhi, 2022. "Empirical evidence of risk contagion across regional housing markets in China," Economic Modelling, Elsevier, vol. 115(C).
    8. Derumigny Alexis & Fermanian Jean-David, 2019. "On kernel-based estimation of conditional Kendall’s tau: finite-distance bounds and asymptotic behavior," Dependence Modeling, De Gruyter, vol. 7(1), pages 292-321, January.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2101.12262. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.