IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2009.14136.html
   My bibliography  Save this paper

Time your hedge with Deep Reinforcement Learning

Author

Listed:
  • Eric Benhamou
  • David Saltiel
  • Sandrine Ungari
  • Abhishek Mukhopadhyay

Abstract

Can an asset manager plan the optimal timing for her/his hedging strategies given market conditions? The standard approach based on Markowitz or other more or less sophisticated financial rules aims to find the best portfolio allocation thanks to forecasted expected returns and risk but fails to fully relate market conditions to hedging strategies decision. In contrast, Deep Reinforcement Learning (DRL) can tackle this challenge by creating a dynamic dependency between market information and hedging strategies allocation decisions. In this paper, we present a realistic and augmented DRL framework that: (i) uses additional contextual information to decide an action, (ii) has a one period lag between observations and actions to account for one day lag turnover of common asset managers to rebalance their hedge, (iii) is fully tested in terms of stability and robustness thanks to a repetitive train test method called anchored walk forward training, similar in spirit to k fold cross validation for time series and (iv) allows managing leverage of our hedging strategy. Our experiment for an augmented asset manager interested in sizing and timing his hedges shows that our approach achieves superior returns and lower risk.

Suggested Citation

  • Eric Benhamou & David Saltiel & Sandrine Ungari & Abhishek Mukhopadhyay, 2020. "Time your hedge with Deep Reinforcement Learning," Papers 2009.14136, arXiv.org, revised Nov 2020.
  • Handle: RePEc:arx:papers:2009.14136
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2009.14136
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Xinyi Li & Yinchuan Li & Yuancheng Zhan & Xiao-Yang Liu, 2019. "Optimistic Bull or Pessimistic Bear: Adaptive Deep Reinforcement Learning for Stock Portfolio Allocation," Papers 1907.01503, arXiv.org.
    2. Haoran Wang & Xun Yu Zhou, 2019. "Continuous-Time Mean-Variance Portfolio Selection: A Reinforcement Learning Framework," Papers 1904.11392, arXiv.org, revised May 2019.
    3. Yunan Ye & Hengzhi Pei & Boxin Wang & Pin-Yu Chen & Yada Zhu & Jun Xiao & Bo Li, 2020. "Reinforcement-Learning based Portfolio Management with Augmented Asset Movement Prediction States," Papers 2002.05780, arXiv.org.
    4. Eric Benhamou & David Saltiel & Jean-Jacques Ohana & Jamal Atif, 2020. "Detecting and adapting to crisis pattern with context based Deep Reinforcement Learning," Papers 2009.07200, arXiv.org, revised Nov 2020.
    5. Dias, José G. & Vermunt, Jeroen K. & Ramos, Sofia, 2015. "Clustering financial time series: New insights from an extended hidden Markov model," European Journal of Operational Research, Elsevier, vol. 243(3), pages 852-864.
    6. Zhengyao Jiang & Dixing Xu & Jinjun Liang, 2017. "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem," Papers 1706.10059, arXiv.org, revised Jul 2017.
    7. Zhipeng Liang & Hao Chen & Junhao Zhu & Kangkang Jiang & Yanran Li, 2018. "Adversarial Deep Reinforcement Learning in Portfolio Management," Papers 1808.09940, arXiv.org, revised Nov 2018.
    8. J. B. Heaton & N. G. Polson & J. H. Witte, 2017. "Deep learning for finance: deep portfolios," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 33(1), pages 3-12, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Eric Benhamou & David Saltiel & Serge Tabachnik & Sui Kai Wong & François Chareyron, 2021. "Distinguish the indistinguishable: a Deep Reinforcement Learning approach for volatility targeting models," Working Papers hal-03202431, HAL.
    2. Eric Benhamou & David Saltiel & Serge Tabachnik & Sui Kai Wong & Franc{c}ois Chareyron, 2021. "Adaptive learning for financial markets mixing model-based and model-free RL for volatility targeting," Papers 2104.10483, arXiv.org, revised Apr 2021.
    3. Eric Benhamou & David Saltiel & Sandrine Ungari & Abhishek Mukhopadhyay & Jamal Atif, 2020. "AAMDRL: Augmented Asset Management with Deep Reinforcement Learning," Papers 2010.08497, arXiv.org.
    4. Eric Benhamou & David Saltiel & Sandrine Ungari & Abhishek Mukhopadhyay, 2020. "Bridging the gap between Markowitz planning and deep reinforcement learning," Papers 2010.09108, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Eric Benhamou & David Saltiel & Sandrine Ungari & Abhishek Mukhopadhyay & Jamal Atif, 2020. "AAMDRL: Augmented Asset Management with Deep Reinforcement Learning," Papers 2010.08497, arXiv.org.
    2. Eric Benhamou & David Saltiel & Serge Tabachnik & Sui Kai Wong & François Chareyron, 2021. "Distinguish the indistinguishable: a Deep Reinforcement Learning approach for volatility targeting models," Working Papers hal-03202431, HAL.
    3. Eric Benhamou & David Saltiel & Serge Tabachnik & Sui Kai Wong & Franc{c}ois Chareyron, 2021. "Adaptive learning for financial markets mixing model-based and model-free RL for volatility targeting," Papers 2104.10483, arXiv.org, revised Apr 2021.
    4. Amirhosein Mosavi & Yaser Faghan & Pedram Ghamisi & Puhong Duan & Sina Faizollahzadeh Ardabili & Ely Salwana & Shahab S. Band, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Mathematics, MDPI, vol. 8(10), pages 1-42, September.
    5. Eric Benhamou & David Saltiel & Sandrine Ungari & Abhishek Mukhopadhyay, 2020. "Bridging the gap between Markowitz planning and deep reinforcement learning," Papers 2010.09108, arXiv.org.
    6. Kumar Yashaswi, 2021. "Deep Reinforcement Learning for Portfolio Optimization using Latent Feature State Space (LFSS) Module," Papers 2102.06233, arXiv.org.
    7. Ricard Durall, 2022. "Asset Allocation: From Markowitz to Deep Reinforcement Learning," Papers 2208.07158, arXiv.org.
    8. Amir Mosavi & Pedram Ghamisi & Yaser Faghan & Puhong Duan, 2020. "Comprehensive Review of Deep Reinforcement Learning Methods and Applications in Economics," Papers 2004.01509, arXiv.org.
    9. Mei-Li Shen & Cheng-Feng Lee & Hsiou-Hsiang Liu & Po-Yin Chang & Cheng-Hong Yang, 2021. "An Effective Hybrid Approach for Forecasting Currency Exchange Rates," Sustainability, MDPI, vol. 13(5), pages 1-29, March.
    10. Shuo Sun & Rundong Wang & Bo An, 2021. "Reinforcement Learning for Quantitative Trading," Papers 2109.13851, arXiv.org.
    11. Yunan Ye & Hengzhi Pei & Boxin Wang & Pin-Yu Chen & Yada Zhu & Jun Xiao & Bo Li, 2020. "Reinforcement-Learning based Portfolio Management with Augmented Asset Movement Prediction States," Papers 2002.05780, arXiv.org.
    12. Zhenhan Huang & Fumihide Tanaka, 2021. "MSPM: A Modularized and Scalable Multi-Agent Reinforcement Learning-based System for Financial Portfolio Management," Papers 2102.03502, arXiv.org, revised Feb 2022.
    13. Mengying Zhu & Xiaolin Zheng & Yan Wang & Yuyuan Li & Qianqiao Liang, 2019. "Adaptive Portfolio by Solving Multi-armed Bandit via Thompson Sampling," Papers 1911.05309, arXiv.org, revised Nov 2019.
    14. Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
    15. Yasuhiro Nakayama & Tomochika Sawaki, 2023. "Causal Inference on Investment Constraints and Non-stationarity in Dynamic Portfolio Optimization through Reinforcement Learning," Papers 2311.04946, arXiv.org.
    16. Hui Niu & Siyuan Li & Jian Li, 2022. "MetaTrader: An Reinforcement Learning Approach Integrating Diverse Policies for Portfolio Optimization," Papers 2210.01774, arXiv.org.
    17. Xiangyu Cui & Xun Li & Yun Shi & Si Zhao, 2023. "Discrete-Time Mean-Variance Strategy Based on Reinforcement Learning," Papers 2312.15385, arXiv.org.
    18. Huanming Zhang & Zhengyong Jiang & Jionglong Su, 2021. "A Deep Deterministic Policy Gradient-based Strategy for Stocks Portfolio Management," Papers 2103.11455, arXiv.org.
    19. Kinyua, Johnson D. & Mutigwe, Charles & Cushing, Daniel J. & Poggi, Michael, 2021. "An analysis of the impact of President Trump’s tweets on the DJIA and S&P 500 using machine learning and sentiment analysis," Journal of Behavioral and Experimental Finance, Elsevier, vol. 29(C).
    20. Yinheng Li & Junhao Wang & Yijie Cao, 2019. "A General Framework on Enhancing Portfolio Management with Reinforcement Learning," Papers 1911.11880, arXiv.org, revised Oct 2023.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2009.14136. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.