IDEAS home Printed from https://ideas.repec.org/p/arx/papers/2003.02173.html
   My bibliography  Save this paper

Dynamics of state-wise prospective reserves in the presence of non-monotone information

Author

Listed:
  • Marcus C. Christiansen
  • Christian Furrer

Abstract

In the presence of monotone information, the stochastic Thiele equation describing the dynamics of state-wise prospective reserves is closely related to the classic martingale representation theorem. When the information utilized by the insurer is non-monotone, the classic martingale theory does not apply. By taking an infinitesimal approach, we derive a generalized stochastic Thiele equation that allows for information discarding. En passant, we solve some open problems for the classic case of monotone information. The results and their implication in practice are illustrated via examples where information is discarded upon and after stochastic retirement.

Suggested Citation

  • Marcus C. Christiansen & Christian Furrer, 2020. "Dynamics of state-wise prospective reserves in the presence of non-monotone information," Papers 2003.02173, arXiv.org, revised Jan 2021.
  • Handle: RePEc:arx:papers:2003.02173
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/2003.02173
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ragnar Norberg, 1999. "A theory of bonus in life insurance," Finance and Stochastics, Springer, vol. 3(4), pages 373-390.
    2. Steffensen, Mogens, 2000. "A no arbitrage approach to Thiele's differential equation," Insurance: Mathematics and Economics, Elsevier, vol. 27(2), pages 201-214, October.
    3. Marcus C. Christiansen, 2018. "A martingale concept for non-monotone information in a jump process framework," Papers 1811.00952, arXiv.org, revised Jan 2021.
    4. Christiansen, Marcus C. & Djehiche, Boualem, 2020. "Nonlinear reserving and multiple contract modifications in life insurance," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 187-195.
    5. Djehiche, Boualem & Löfdahl, Björn, 2016. "Nonlinear reserving in life insurance: Aggregation and mean-field approximation," Insurance: Mathematics and Economics, Elsevier, vol. 69(C), pages 1-13.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kristian Buchardt & Christian Furrer & Oliver Lunding Sandqvist, 2022. "Transaction time models in multi-state life insurance," Papers 2209.06902, arXiv.org, revised Feb 2023.
    2. Nießl, Alexandra & Allignol, Arthur & Beyersmann, Jan & Mueller, Carina, 2023. "Statistical inference for state occupation and transition probabilities in non-Markov multi-state models subject to both random left-truncation and right-censoring," Econometrics and Statistics, Elsevier, vol. 25(C), pages 110-124.
    3. Oliver Lunding Sandqvist, 2023. "A multistate approach to disability insurance reserving with information delays," Papers 2312.14324, arXiv.org.
    4. Christiansen, Marcus C. & Furrer, Christian, 2022. "Extension of as-if-Markov modeling to scaled payments," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 288-306.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Christiansen, Marcus C. & Furrer, Christian, 2021. "Dynamics of state-wise prospective reserves in the presence of non-monotone information," Insurance: Mathematics and Economics, Elsevier, vol. 97(C), pages 81-98.
    2. Marcus C. Christiansen, 2021. "Time-dynamic evaluations under non-monotone information generated by marked point processes," Finance and Stochastics, Springer, vol. 25(3), pages 563-596, July.
    3. Debbie Kusch Falden & Anna Kamille Nyegaard, 2021. "Retrospective Reserves and Bonus with Policyholder Behavior," Risks, MDPI, vol. 9(1), pages 1-28, January.
    4. Møller, T., 2002. "On Valuation and Risk Management at the Interface of Insurance and Finance," British Actuarial Journal, Cambridge University Press, vol. 8(4), pages 787-827, October.
    5. Marcus C. Christiansen, 2018. "A martingale concept for non-monotone information in a jump process framework," Papers 1811.00952, arXiv.org, revised Jan 2021.
    6. Akihiro Kaneko, 2023. "Multi-stage Euler-Maruyama methods for backward stochastic differential equations driven by continuous-time Markov chains," Papers 2311.08826, arXiv.org, revised Nov 2023.
    7. Christiansen, Marcus C. & Djehiche, Boualem, 2020. "Nonlinear reserving and multiple contract modifications in life insurance," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 187-195.
    8. Asmussen, Soren & Moller, Jakob R., 2003. "Risk comparisons of premium rules: optimality and a life insurance study," Insurance: Mathematics and Economics, Elsevier, vol. 32(3), pages 331-344, July.
    9. Tenorio Villal¢n, Angel F. & Martín Caraballo, Ana M. & Paralera Morales, Concepción & Contreras Rubio, Ignacio, 2013. "Ecuaciones diferenciales y en diferencias aplicadas a los conceptos económicos y financieros || Differential and Difference Equations Applied to Economic and Financial Concepts," Revista de Métodos Cuantitativos para la Economía y la Empresa = Journal of Quantitative Methods for Economics and Business Administration, Universidad Pablo de Olavide, Department of Quantitative Methods for Economics and Business Administration, vol. 16(1), pages 165-199, December.
    10. Francesca Biagini & Andreas Groll & Jan Widenmann, 2016. "Risk Minimization for Insurance Products via F-Doubly Stochastic Markov Chains," Risks, MDPI, vol. 4(3), pages 1-26, July.
    11. Jamaal Ahmad & Kristian Buchardt & Christian Furrer, 2020. "Computation of bonus in multi-state life insurance," Papers 2007.04051, arXiv.org, revised Nov 2023.
    12. Andreas Niemeyer, 2015. "Safety Margins for Systematic Biometric and Financial Risk in a Semi-Markov Life Insurance Framework," Risks, MDPI, vol. 3(1), pages 1-26, January.
    13. Christiansen, Marcus C. & Furrer, Christian, 2022. "Extension of as-if-Markov modeling to scaled payments," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 288-306.
    14. Ragnar Norberg, 2013. "Optimal hedging of demographic risk in life insurance," Finance and Stochastics, Springer, vol. 17(1), pages 197-222, January.
    15. Dahl, Mikkel, 2004. "Stochastic mortality in life insurance: market reserves and mortality-linked insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 35(1), pages 113-136, August.
    16. Jarner, Søren Fiig & Kronborg, Morten Tolver, 2016. "Entrance times of random walks: With applications to pension fund modeling," Insurance: Mathematics and Economics, Elsevier, vol. 67(C), pages 1-20.
    17. Oytun Hac{c}ar{i}z & Torsten Kleinow & Angus S. Macdonald, 2023. "On Technical Bases and Surplus in Life Insurance," Papers 2310.16927, arXiv.org.
    18. Kristian Buchardt & Christian Furrer & Oliver Lunding Sandqvist, 2022. "Transaction time models in multi-state life insurance," Papers 2209.06902, arXiv.org, revised Feb 2023.
    19. Julian Jetses & Marcus C. Christiansen, 2021. "A General Surplus Decomposition Principle in Life Insurance," Papers 2111.12967, arXiv.org.
    20. Ninna Reitzel Jensen & Kristian Juul Schomacker, 2015. "A Two-Account Life Insurance Model for Scenario-Based Valuation Including Event Risk," Risks, MDPI, vol. 3(2), pages 1-36, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:2003.02173. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.