IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1906.01232.html
   My bibliography  Save this paper

Optimal Stopping under Model Ambiguity: a Time-Consistent Equilibrium Approach

Author

Listed:
  • Yu-Jui Huang
  • Xiang Yu

Abstract

An unconventional approach for optimal stopping under model ambiguity is introduced. Besides ambiguity itself, we take into account how ambiguity-averse an agent is. This inclusion of ambiguity attitude, via an $\alpha$-maxmin nonlinear expectation, renders the stopping problem time-inconsistent. We look for subgame perfect equilibrium stopping policies, formulated as fixed points of an operator. For a one-dimensional diffusion with drift and volatility uncertainty, we show that every equilibrium can be obtained through a fixed-point iteration. This allows us to capture much more diverse behavior, depending on an agent's ambiguity attitude, beyond the standard worst-case (or best-case) analysis. In a concrete example of real options valuation under volatility uncertainty, all equilibrium stopping policies, as well as the best one among them, are fully characterized. It demonstrates explicitly the effect of ambiguity attitude on decision making: the more ambiguity-averse, the more eager to stop -- so as to withdraw from the uncertain environment. The main result hinges on a delicate analysis of continuous sample paths in the canonical space and the capacity theory. To resolve measurability issues, a generalized measurable projection theorem, new to the literature, is also established.

Suggested Citation

  • Yu-Jui Huang & Xiang Yu, 2019. "Optimal Stopping under Model Ambiguity: a Time-Consistent Equilibrium Approach," Papers 1906.01232, arXiv.org, revised Mar 2021.
  • Handle: RePEc:arx:papers:1906.01232
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1906.01232
    File Function: Latest version
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Erhan Bayraktar & Zhenhua Wang & Zhou Zhou, 2023. "Equilibria of time‐inconsistent stopping for one‐dimensional diffusion processes," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 797-841, July.
    2. Junbeom Lee & Xiang Yu & Chao Zhou, 2019. "Lifetime Ruin under High-watermark Fees and Drift Uncertainty," Papers 1909.01121, arXiv.org, revised Oct 2020.
    3. Soren Christensen & Kristoffer Lindensjo, 2019. "Time-inconsistent stopping, myopic adjustment & equilibrium stability: with a mean-variance application," Papers 1909.11921, arXiv.org, revised Jan 2020.
    4. Denis Belomestny & Tobias Hübner & Volker Krätschmer, 2022. "Solving optimal stopping problems under model uncertainty via empirical dual optimisation," Finance and Stochastics, Springer, vol. 26(3), pages 461-503, July.
    5. Erhan Bayraktar & Jingjie Zhang & Zhou Zhou, 2021. "Equilibrium concepts for time‐inconsistent stopping problems in continuous time," Mathematical Finance, Wiley Blackwell, vol. 31(1), pages 508-530, January.
    6. Yu-Jui Huang & Zhou Zhou, 2021. "A Time-Inconsistent Dynkin Game: from Intra-personal to Inter-personal Equilibria," Papers 2101.00343, arXiv.org, revised Dec 2021.
    7. Yu-Jui Huang & Zhou Zhou, 2022. "A time-inconsistent Dynkin game: from intra-personal to inter-personal equilibria," Finance and Stochastics, Springer, vol. 26(2), pages 301-334, April.
    8. Oumar Mbodji & Traian A. Pirvu, 2023. "Portfolio Time Consistency and Utility Weighted Discount Rates," Papers 2402.05113, arXiv.org.
    9. Xue Dong He & Xun Yu Zhou, 2021. "Who Are I: Time Inconsistency and Intrapersonal Conflict and Reconciliation," Papers 2105.01829, arXiv.org.
    10. Sascha Desmettre & Mogens Steffensen, 2023. "Equilibrium investment with random risk aversion," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 946-975, July.
    11. Shuoqing Deng & Xiang Yu & Jiacheng Zhang, 2023. "On time-consistent equilibrium stopping under aggregation of diverse discount rates," Papers 2302.07470, arXiv.org, revised Dec 2023.
    12. Zongxia Liang & Fengyi Yuan, 2023. "Weak equilibria for time‐inconsistent control: With applications to investment‐withdrawal decisions," Mathematical Finance, Wiley Blackwell, vol. 33(3), pages 891-945, July.
    13. Park, Kyunghyun & Wong, Hoi Ying & Yan, Tingjin, 2023. "Robust retirement and life insurance with inflation risk and model ambiguity," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 1-30.
    14. Yu-Jui Huang & Zhenhua Wang, 2020. "Optimal Equilibria for Multi-dimensional Time-inconsistent Stopping Problems," Papers 2006.00754, arXiv.org, revised Jan 2021.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1906.01232. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.