IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1812.10252.html
   My bibliography  Save this paper

Optimizing Market Making using Multi-Agent Reinforcement Learning

Author

Listed:
  • Yagna Patel

Abstract

In this paper, reinforcement learning is applied to the problem of optimizing market making. A multi-agent reinforcement learning framework is used to optimally place limit orders that lead to successful trades. The framework consists of two agents. The macro-agent optimizes on making the decision to buy, sell, or hold an asset. The micro-agent optimizes on placing limit orders within the limit order book. For the context of this paper, the proposed framework is applied and studied on the Bitcoin cryptocurrency market. The goal of this paper is to show that reinforcement learning is a viable strategy that can be applied to complex problems (with complex environments) such as market making.

Suggested Citation

  • Yagna Patel, 2018. "Optimizing Market Making using Multi-Agent Reinforcement Learning," Papers 1812.10252, arXiv.org.
  • Handle: RePEc:arx:papers:1812.10252
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1812.10252
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Olivier Guéant, 2017. "Optimal market making," Post-Print hal-02862554, HAL.
    2. Olivier Guéant, 2017. "Optimal market making," Université Paris1 Panthéon-Sorbonne (Post-Print and Working Papers) hal-02862554, HAL.
    3. Matthew F Dixon, 2017. "A High Frequency Trade Execution Model for Supervised Learning," Papers 1710.03870, arXiv.org, revised Dec 2017.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jiafa He & Cong Zheng & Can Yang, 2023. "Integrating Tick-level Data and Periodical Signal for High-frequency Market Making," Papers 2306.17179, arXiv.org.
    2. Schnaubelt, Matthias, 2020. "Deep reinforcement learning for the optimal placement of cryptocurrency limit orders," FAU Discussion Papers in Economics 05/2020, Friedrich-Alexander University Erlangen-Nuremberg, Institute for Economics.
    3. Ben Hambly & Renyuan Xu & Huining Yang, 2021. "Recent Advances in Reinforcement Learning in Finance," Papers 2112.04553, arXiv.org, revised Feb 2023.
    4. Bruno Gašperov & Stjepan Begušić & Petra Posedel Šimović & Zvonko Kostanjčar, 2021. "Reinforcement Learning Approaches to Optimal Market Making," Mathematics, MDPI, vol. 9(21), pages 1-22, October.
    5. Jonathan Sadighian, 2019. "Deep Reinforcement Learning in Cryptocurrency Market Making," Papers 1911.08647, arXiv.org.
    6. Michael Karpe & Jin Fang & Zhongyao Ma & Chen Wang, 2020. "Multi-Agent Reinforcement Learning in a Realistic Limit Order Book Market Simulation," Papers 2006.05574, arXiv.org, revised Sep 2020.
    7. Hui Niu & Siyuan Li & Jiahao Zheng & Zhouchi Lin & Jian Li & Jian Guo & Bo An, 2023. "IMM: An Imitative Reinforcement Learning Approach with Predictive Representation Learning for Automatic Market Making," Papers 2308.08918, arXiv.org.
    8. Joseph Jerome & Gregory Palmer & Rahul Savani, 2022. "Market Making with Scaled Beta Policies," Papers 2207.03352, arXiv.org, revised Sep 2022.
    9. Jonathan Sadighian, 2020. "Extending Deep Reinforcement Learning Frameworks in Cryptocurrency Market Making," Papers 2004.06985, arXiv.org.
    10. Joseph Jerome & Leandro Sanchez-Betancourt & Rahul Savani & Martin Herdegen, 2022. "Model-based gym environments for limit order book trading," Papers 2209.07823, arXiv.org.
    11. Song Wei & Andrea Coletta & Svitlana Vyetrenko & Tucker Balch, 2023. "INTAGS: Interactive Agent-Guided Simulation," Papers 2309.01784, arXiv.org, revised Nov 2023.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehdi Tomas & Iacopo Mastromatteo & Michael Benzaquen, 2020. "How to build a cross-impact model from first principles: Theoretical requirements and empirical results," Working Papers hal-02567489, HAL.
    2. Lester Ingber, 2020. "Developing Bid-Ask Probabilities for High-Frequency Trading," Virtual Economics, The London Academy of Science and Business, vol. 3(2), pages 7-24, April.
    3. Mehdi Tomas & Iacopo Mastromatteo & Michael Benzaquen, 2020. "How to build a cross-impact model from first principles: Theoretical requirements and empirical results," Papers 2004.01624, arXiv.org, revised Mar 2022.
    4. Nicolas Baradel & Bruno Bouchard & David Evangelista & Othmane Mounjid, 2019. "Optimal inventory management and order book modeling," Post-Print hal-01710301, HAL.
    5. Bastien Baldacci & Philippe Bergault & Olivier Gu'eant, 2019. "Algorithmic market making for options," Papers 1907.12433, arXiv.org, revised Jul 2020.
    6. Nicolas Baradel & Bruno Bouchard & David Evangelista & Othmane Mounjid, 2018. "Optimal inventory management and order book modeling," Working Papers hal-01710301, HAL.
    7. Philippe Bergault & Olivier Gu'eant, 2019. "Size matters for OTC market makers: general results and dimensionality reduction techniques," Papers 1907.01225, arXiv.org, revised Sep 2022.
    8. L. Ingber, 2020. "Forecasting with importance-sampling and path-integrals: Applications to COVID-19," Lester Ingber Papers 20fi, Lester Ingber.
    9. Nicolas Baradel & Bruno Bouchard & David Evangelista & Othmane Mounjid, 2018. "Optimal inventory management and order book modeling," Papers 1802.08135, arXiv.org, revised Nov 2018.
    10. Grilli, Luca & Santoro, Domenico, 2020. "How Boltzmann Entropy Improves Prediction with LSTM," MPRA Paper 100578, University Library of Munich, Germany.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1812.10252. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.