IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1803.04483.html
   My bibliography  Save this paper

Pathwise moderate deviations for option pricing

Author

Listed:
  • Antoine Jacquier
  • Konstantinos Spiliopoulos

Abstract

We provide a unifying treatment of pathwise moderate deviations for models commonly used in financial applications, and for related integrated functionals. Suitable scaling allows us to transfer these results into small-time, large-time and tail asymptotics for diffusions, as well as for option prices and realised variances. In passing, we highlight some intuitive relationships between moderate deviations rate functions and their large deviations counterparts; these turn out to be useful for numerical purposes, as large deviations rate functions are often difficult to compute.

Suggested Citation

  • Antoine Jacquier & Konstantinos Spiliopoulos, 2018. "Pathwise moderate deviations for option pricing," Papers 1803.04483, arXiv.org, revised Dec 2018.
  • Handle: RePEc:arx:papers:1803.04483
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1803.04483
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Fouque,Jean-Pierre & Papanicolaou,George & Sircar,Ronnie & Sølna,Knut, 2011. "Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives," Cambridge Books, Cambridge University Press, number 9780521843584.
    2. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," The Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    3. Dupuis, Paul & Spiliopoulos, Konstantinos, 2012. "Large deviations for multiscale diffusion via weak convergence methods," Stochastic Processes and their Applications, Elsevier, vol. 122(4), pages 1947-1987.
    4. Guillin, A. & Liptser, R., 2005. "MDP for integral functionals of fast and slow processes with averaging," Stochastic Processes and their Applications, Elsevier, vol. 115(7), pages 1187-1207, July.
    5. Jin Feng & Jean-Pierre Fouque & Rohini Kumar, 2010. "Small-time asymptotics for fast mean-reverting stochastic volatility models," Papers 1009.2782, arXiv.org, revised Aug 2012.
    6. Robertson, Scott, 2010. "Sample path Large Deviations and optimal importance sampling for stochastic volatility models," Stochastic Processes and their Applications, Elsevier, vol. 120(1), pages 66-83, January.
    7. Martin Forde & Antoine Jacquier, 2011. "The large-maturity smile for the Heston model," Finance and Stochastics, Springer, vol. 15(4), pages 755-780, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antoine Jacquier & Fangwei Shi, 2018. "Small-time moderate deviations for the randomised Heston model," Papers 1808.03548, arXiv.org.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jacquier, Antoine & Roome, Patrick, 2016. "Large-maturity regimes of the Heston forward smile," Stochastic Processes and their Applications, Elsevier, vol. 126(4), pages 1087-1123.
    2. Antoine Jacquier & Alexandre Pannier, 2020. "Large and moderate deviations for stochastic Volterra systems," Papers 2004.10571, arXiv.org, revised Apr 2022.
    3. Jacquier, Antoine & Pannier, Alexandre, 2022. "Large and moderate deviations for stochastic Volterra systems," Stochastic Processes and their Applications, Elsevier, vol. 149(C), pages 142-187.
    4. Archil Gulisashvili, 2022. "Multivariate Stochastic Volatility Models and Large Deviation Principles," Papers 2203.09015, arXiv.org, revised Nov 2022.
    5. Bezemek, Z.W. & Spiliopoulos, K., 2023. "Large deviations for interacting multiscale particle systems," Stochastic Processes and their Applications, Elsevier, vol. 155(C), pages 27-108.
    6. Archil Gulisashvili & Frederi Viens & Xin Zhang, 2015. "Small-time asymptotics for Gaussian self-similar stochastic volatility models," Papers 1505.05256, arXiv.org, revised Mar 2016.
    7. Matthew Lorig, 2011. "Pricing Derivatives on Multiscale Diffusions: an Eigenfunction Expansion Approach," Papers 1109.0738, arXiv.org, revised Apr 2012.
    8. Kumar, Rohini & Popovic, Lea, 2017. "Large deviations for multi-scale jump-diffusion processes," Stochastic Processes and their Applications, Elsevier, vol. 127(4), pages 1297-1320.
    9. Gifty Malhotra & R. Srivastava & H. C. Taneja, 2019. "Comparative Study of Two Extensions of Heston Stochastic Volatility Model," Papers 1912.10237, arXiv.org.
    10. Aur'elien Alfonsi & David Krief & Peter Tankov, 2018. "Long-time large deviations for the multi-asset Wishart stochastic volatility model and option pricing," Papers 1806.06883, arXiv.org.
    11. Konstantinos Spiliopoulos & Alexandra Chronopoulou, 2013. "Maximum likelihood estimation for small noise multiscale diffusions," Statistical Inference for Stochastic Processes, Springer, vol. 16(3), pages 237-266, October.
    12. Hossein Jafari & Ghazaleh Rahimi, 2019. "Small-Time Asymptotics In Geometric Asian Options For A Stochastic Volatility Jump-Diffusion Model," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(02), pages 1-19, March.
    13. Gulisashvili, Archil, 2021. "Time-inhomogeneous Gaussian stochastic volatility models: Large deviations and super roughness," Stochastic Processes and their Applications, Elsevier, vol. 139(C), pages 37-79.
    14. Kim, Hyun-Gyoon & Kim, Jeong-Hoon, 2023. "A stochastic-local volatility model with Le´vy jumps for pricing derivatives," Applied Mathematics and Computation, Elsevier, vol. 451(C).
    15. Romain Bompis & Emmanuel Gobet, 2012. "Asymptotic and non asymptotic approximations for option valuation," Post-Print hal-00720650, HAL.
    16. Solesne Bourguin & Thanh Dang & Konstantinos Spiliopoulos, 2023. "Moderate Deviation Principle for Multiscale Systems Driven by Fractional Brownian Motion," Journal of Theoretical Probability, Springer, vol. 36(1), pages 1-57, March.
    17. Djellout, Hacène & Guillin, Arnaud & Samoura, Yacouba, 2017. "Estimation of the realized (co-)volatility vector: Large deviations approach," Stochastic Processes and their Applications, Elsevier, vol. 127(9), pages 2926-2960.
    18. Hamza Guennoun & Antoine Jacquier & Patrick Roome & Fangwei Shi, 2014. "Asymptotic behaviour of the fractional Heston model," Papers 1411.7653, arXiv.org, revised Aug 2017.
    19. Forde, Martin, 2014. "The large-maturity smile for the Stein–Stein model," Statistics & Probability Letters, Elsevier, vol. 91(C), pages 145-152.
    20. Archil Gulisashvili, 2020. "Large deviation principles for stochastic volatility models with reflection and three faces of the Stein and Stein model," Papers 2006.15431, arXiv.org.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1803.04483. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.