IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1802.03405.html
   My bibliography  Save this paper

Particle-without-Particle: a practical pseudospectral collocation method for linear partial differential equations with distributional sources

Author

Listed:
  • Marius Oltean
  • Carlos F. Sopuerta
  • Alessandro D. A. M. Spallicci

Abstract

Partial differential equations with distributional sources---in particular, involving (derivatives of) delta distributions---have become increasingly ubiquitous in numerous areas of physics and applied mathematics. It is often of considerable interest to obtain numerical solutions for such equations, but any singular ("particle"-like) source modeling invariably introduces nontrivial computational obstacles. A common method to circumvent these is through some form of delta function approximation procedure on the computational grid; however, this often carries significant limitations on the efficiency of the numerical convergence rates, or sometimes even the resolvability of the problem at all. In this paper, we present an alternative technique for tackling such equations which avoids the singular behavior entirely: the "Particle-without-Particle" method. Previously introduced in the context of the self-force problem in gravitational physics, the idea is to discretize the computational domain into two (or more) disjoint pseudospectral (Chebyshev-Lobatto) grids such that the "particle" is always at the interface between them; thus, one only needs to solve homogeneous equations in each domain, with the source effectively replaced by jump (boundary) conditions thereon. We prove here that this method yields solutions to any linear PDE the source of which is any linear combination of delta distributions and derivatives thereof supported on a one-dimensional subspace of the problem domain. We then implement it to numerically solve a variety of relevant PDEs: hyperbolic (with applications to neuroscience and acoustics), parabolic (with applications to finance), and elliptic. We generically obtain improved convergence rates relative to typical past implementations relying on delta function approximations.

Suggested Citation

  • Marius Oltean & Carlos F. Sopuerta & Alessandro D. A. M. Spallicci, 2018. "Particle-without-Particle: a practical pseudospectral collocation method for linear partial differential equations with distributional sources," Papers 1802.03405, arXiv.org, revised Nov 2018.
  • Handle: RePEc:arx:papers:1802.03405
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1802.03405
    File Function: Latest version
    Download Restriction: no
    ---><---

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1802.03405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.