IDEAS home Printed from https://ideas.repec.org/p/arx/papers/1403.7269.html
   My bibliography  Save this paper

A Note on the Quantile Formulation

Author

Listed:
  • Zuo Quan Xu

Abstract

Many investment models in discrete or continuous-time settings boil down to maximizing an objective of the quantile function of the decision variable. This quantile optimization problem is known as the quantile formulation of the original investment problem. Under certain monotonicity assumptions, several schemes to solve such quantile optimization problems have been proposed in the literature. In this paper, we propose a change-of-variable and relaxation method to solve the quantile optimization problems without using the calculus of variations or making any monotonicity assumptions. The method is demonstrated through a portfolio choice problem under rank-dependent utility theory (RDUT). We show that this problem is equivalent to a classical Merton's portfolio choice problem under expected utility theory with the same utility function but a different pricing kernel explicitly determined by the given pricing kernel and probability weighting function. With this result, the feasibility, well-posedness, attainability and uniqueness issues for the portfolio choice problem under RDUT are solved. It is also shown that solving functional optimization problems may reduce to solving probabilistic optimization problems. The method is applicable to general models with law-invariant preference measures including portfolio choice models under cumulative prospect theory (CPT) or RDUT, Yaari's dual model, Lopes' SP/A model, and optimal stopping models under CPT or RDUT.

Suggested Citation

  • Zuo Quan Xu, 2014. "A Note on the Quantile Formulation," Papers 1403.7269, arXiv.org, revised Apr 2014.
  • Handle: RePEc:arx:papers:1403.7269
    as

    Download full text from publisher

    File URL: http://arxiv.org/pdf/1403.7269
    File Function: Latest version
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    2. Hanqing Jin & Zuo Quan Xu & Xun Yu Zhou, 2008. "A Convex Stochastic Optimization Problem Arising From Portfolio Selection," Mathematical Finance, Wiley Blackwell, vol. 18(1), pages 171-183, January.
    3. Hanqing Jin & Xun Yu Zhou, 2008. "Behavioral Portfolio Selection In Continuous Time," Mathematical Finance, Wiley Blackwell, vol. 18(3), pages 385-426, July.
    4. Zuo Quan Xu, 2013. "A New Characterization of Comonotonicity and its Application in Behavioral Finance," Papers 1311.6080, arXiv.org, revised Jun 2014.
    5. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    6. Stanley R. Pliska, 1986. "A Stochastic Calculus Model of Continuous Trading: Optimal Portfolios," Mathematics of Operations Research, INFORMS, vol. 11(2), pages 371-382, May.
    7. Zuo Quan Xu & Xun Yu Zhou, 2011. "Optimal stopping under probability distortion," Papers 1103.1755, arXiv.org, revised Feb 2013.
    8. Drazen Prelec, 1998. "The Probability Weighting Function," Econometrica, Econometric Society, vol. 66(3), pages 497-528, May.
    9. Cox, John C. & Huang, Chi-fu, 1989. "Optimal consumption and portfolio policies when asset prices follow a diffusion process," Journal of Economic Theory, Elsevier, vol. 49(1), pages 33-83, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. van Bilsen, Servaas, 2015. "Essays on intertemporal consumption and portfolio choice," Other publications TiSEM 3475a3c2-b85d-404f-8b5d-2, Tilburg University, School of Economics and Management.
    2. Marcos Escobar-Anel & Andreas Lichtenstern & Rudi Zagst, 2020. "Behavioral portfolio insurance strategies," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(4), pages 353-399, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. L. Rüschendorf & Steven Vanduffel, 2020. "On the construction of optimal payoffs," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(1), pages 129-153, June.
    2. Zuo Quan Xu, 2018. "Pareto optimal moral-hazard-free insurance contracts in behavioral finance framework," Papers 1803.02546, arXiv.org, revised Aug 2021.
    3. Mi, Hui & Xu, Zuo Quan, 2023. "Optimal portfolio selection with VaR and portfolio insurance constraints under rank-dependent expected utility theory," Insurance: Mathematics and Economics, Elsevier, vol. 110(C), pages 82-105.
    4. Servaas van Bilsen & Roger J. A. Laeven & Theo E. Nijman, 2020. "Consumption and Portfolio Choice Under Loss Aversion and Endogenous Updating of the Reference Level," Management Science, INFORMS, vol. 66(9), pages 3927-3955, September.
    5. Curatola, Giuliano, 2016. "Optimal consumption and portfolio choice with loss aversion," SAFE Working Paper Series 130, Leibniz Institute for Financial Research SAFE.
    6. Zongxia Liang & Yang Liu & Litian Zhang, 2021. "A Framework of State-dependent Utility Optimization with General Benchmarks," Papers 2101.06675, arXiv.org, revised Dec 2023.
    7. Marcos Escobar-Anel & Andreas Lichtenstern & Rudi Zagst, 2020. "Behavioral portfolio insurance strategies," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 34(4), pages 353-399, December.
    8. Yunhong Li & Zuo Quan Xu & Xun Yu Zhou, 2023. "Robust utility maximization with intractable claims," Papers 2304.06938, arXiv.org, revised Jul 2023.
    9. van Bilsen, Servaas & Laeven, Roger J.A., 2020. "Dynamic consumption and portfolio choice under prospect theory," Insurance: Mathematics and Economics, Elsevier, vol. 91(C), pages 224-237.
    10. Curatola, Giuliano, 2017. "Optimal portfolio choice with loss aversion over consumption," The Quarterly Review of Economics and Finance, Elsevier, vol. 66(C), pages 345-358.
    11. Jing Peng & Pengyu Wei & Zuo Quan Xu, 2022. "Relative growth rate optimization under behavioral criterion," Papers 2211.05402, arXiv.org.
    12. Zuo Quan Xu, 2021. "Moral-hazard-free insurance: mean-variance premium principle and rank-dependent utility theory," Papers 2108.06940, arXiv.org, revised Aug 2022.
    13. Dong, Yinghui & Zheng, Harry, 2019. "Optimal investment of DC pension plan under short-selling constraints and portfolio insurance," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 47-59.
    14. Marcos Escobar-Anel & Michel Kschonnek & Rudi Zagst, 2022. "Portfolio optimization: not necessarily concave utility and constraints on wealth and allocation," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 95(1), pages 101-140, February.
    15. Jakusch, Sven Thorsten & Meyer, Steffen & Hackethal, Andreas, 2019. "Taming models of prospect theory in the wild? Estimation of Vlcek and Hens (2011)," SAFE Working Paper Series 146, Leibniz Institute for Financial Research SAFE, revised 2019.
    16. Stephen G Dimmock & Roy Kouwenberg & Olivia S Mitchell & Kim Peijnenburg, 2021. "Household Portfolio Underdiversification and Probability Weighting: Evidence from the Field," The Review of Financial Studies, Society for Financial Studies, vol. 34(9), pages 4524-4563.
    17. Guan, Guohui & Liang, Zongxia & Xia, Yi, 2023. "Optimal management of DC pension fund under the relative performance ratio and VaR constraint," European Journal of Operational Research, Elsevier, vol. 305(2), pages 868-886.
    18. Bin Zou & Rudi Zagst, 2015. "Optimal Investment with Transaction Costs under Cumulative Prospect Theory in Discrete Time," Papers 1511.04768, arXiv.org, revised Nov 2016.
    19. Fangyuan Zhang, 2023. "Non-concave portfolio optimization with average value-at-risk," Mathematics and Financial Economics, Springer, volume 17, number 3, June.
    20. Christian Hilpert, 2020. "The Effect of Risk Aversion and Loss Aversion on Equity‐Linked Life Insurance With Surrender Guarantees," Journal of Risk & Insurance, The American Risk and Insurance Association, vol. 87(3), pages 665-687, September.

    More about this item

    NEP fields

    This paper has been announced in the following NEP Reports:

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:arx:papers:1403.7269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: arXiv administrators (email available below). General contact details of provider: http://arxiv.org/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.