Advanced Search
MyIDEAS: Login

Parameter Estimation using Empirical Likelihood combined with Market Information

Contents:

Author Info

  • Steven Kou
  • Tony Sit
  • Zhiliang Ying
Registered author(s):

    Abstract

    During the last decade Levy processes with jumps have received increasing popularity for modelling market behaviour for both derviative pricing and risk management purposes. Chan et al. (2009) introduced the use of empirical likelihood methods to estimate the parameters of various diffusion processes via their characteristic functions which are readily avaiable in most cases. Return series from the market are used for estimation. In addition to the return series, there are many derivatives actively traded in the market whose prices also contain information about parameters of the underlying process. This observation motivates us, in this paper, to combine the return series and the associated derivative prices observed at the market so as to provide a more reflective estimation with respect to the market movement and achieve a gain of effciency. The usual asymptotic properties, including consistency and asymptotic normality, are established under suitable regularity conditions. Simulation and case studies are performed to demonstrate the feasibility and effectiveness of the proposed method.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://arxiv.org/pdf/1201.2899
    File Function: Latest version
    Download Restriction: no

    Bibliographic Info

    Paper provided by arXiv.org in its series Papers with number 1201.2899.

    as in new window
    Length:
    Date of creation: Jan 2012
    Date of revision:
    Handle: RePEc:arx:papers:1201.2899

    Contact details of provider:
    Web page: http://arxiv.org/

    Related research

    Keywords:

    This paper has been announced in the following NEP Reports:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1201.2899. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.