Advanced Search
MyIDEAS: Login to save this paper or follow this series

Conservative self-organized extremal model for wealth distribution

Contents:

Author Info

  • Abhijit Chakraborty
  • G. Mukherjee
  • S. S. Manna
Registered author(s):

    Abstract

    We present a detailed numerical analysis of the modified version of a conservative self-organized extremal model introduced by Pianegonda et. al. for the distribution of wealth of the people in a society. Here the trading process has been modified by the stochastic bipartite trading rule. More specifically in a trade one of the agents is necessarily the one with the globally minimal value of wealth, the other one being selected randomly from the neighbors of the first agent. The pair of agents then randomly re-shuffle their entire amount of wealth without saving. This model has most of the characteristics similar to the self-organized critical Bak-Sneppen model of evolutionary dynamics. Numerical estimates of a number of critical exponents indicate this model is likely to belong to a new universality class different from the well known models in the literature. In addition the persistence time, which is the time interval between two successive updates of wealth of an agent has been observed to have a non-trivial power law distribution. An opposite version of the model has also been studied where the agent with maximal wealth is selected instead of the one with minimal wealth, which however, exhibits similar behavior as the Minimal Wealth model.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://arxiv.org/pdf/1110.2075
    File Function: Latest version
    Download Restriction: no

    Bibliographic Info

    Paper provided by arXiv.org in its series Papers with number 1110.2075.

    as in new window
    Length:
    Date of creation: Sep 2011
    Date of revision:
    Handle: RePEc:arx:papers:1110.2075

    Contact details of provider:
    Web page: http://arxiv.org/

    Related research

    Keywords:

    This paper has been announced in the following NEP Reports:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1110.2075. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.