Advanced Search
MyIDEAS: Login to save this paper or follow this series

Exponential wealth distribution: a new approach from functional iteration theory

Contents:

Author Info

  • Ricardo Lopez-Ruiz
  • Jose-Luis Lopez
  • Xavier Calbet
Registered author(s):

    Abstract

    Exponential distribution is ubiquitous in the framework of multi-agent systems. Usually, it appears as an equilibrium state in the asymptotic time evolution of statistical systems. It has been explained from very different perspectives. In statistical physics, it is obtained from the principle of maximum entropy. In the same context, it can also be derived without any consideration about information theory, only from geometrical arguments under the hypothesis of equiprobability in phase space. Also, several multi-agent economic models based on mappings, with random, deterministic or chaotic interactions, can give rise to the asymptotic appearance of the exponential wealth distribution. An alternative approach to this problem in the framework of iterations in the space of distributions has been recently presented. Concretely, the new iteration given by $ f_{n+1}(x) = \int\int_{u+v>x}{f_n(u)f_n(v)\over u+v} dudv.$. It is found that the exponential distribution is a stable fixed point of the former functional iteration equation. From this point of view, it is easily understood why the exponential wealth distribution (or by extension, other kind of distributions) is asymptotically obtained in different multi-agent economic models.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://arxiv.org/pdf/1103.1501
    File Function: Latest version
    Download Restriction: no

    Bibliographic Info

    Paper provided by arXiv.org in its series Papers with number 1103.1501.

    as in new window
    Length:
    Date of creation: Mar 2011
    Date of revision:
    Handle: RePEc:arx:papers:1103.1501

    Contact details of provider:
    Web page: http://arxiv.org/

    Related research

    Keywords:

    This paper has been announced in the following NEP Reports:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Victor M. Yakovenko & J. Barkley Rosser, 2009. "Colloquium: Statistical mechanics of money, wealth, and income," Papers 0905.1518, arXiv.org, revised Dec 2009.
    Full references (including those not matched with items on IDEAS)

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1103.1501. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.