Advanced Search
MyIDEAS: Login

Solving Optimal Dividend Problems via Phase-type Fitting Approximation of Scale Functions

Contents:

Author Info

  • Masahiko Egami
  • Kazutoshi Yamazaki
Registered author(s):

    Abstract

    The optimal dividend problem by De Finetti (1957) has been recently generalized to the spectrally negative L\'evy model where the implementation of optimal strategies draws upon the computation of scale functions and their derivatives. This paper proposes a phase-type fitting approximation of the optimal strategy. We consider spectrally negative L\'evy processes with phase-type jumps as well as meromorphic L\'evy processes (Kuznetsov et al., 2010a), and use their scale functions to approximate the scale function for a general spectrally negative L\'evy process. We obtain analytically the convergence results and illustrate numerically the effectiveness of the approximation methods using examples with the spectrally negative L\'evy process with i.i.d. Weibull-distributed jumps, the \beta-family and CGMY process.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://arxiv.org/pdf/1011.4732
    File Function: Latest version
    Download Restriction: no

    Bibliographic Info

    Paper provided by arXiv.org in its series Papers with number 1011.4732.

    as in new window
    Length:
    Date of creation: Nov 2010
    Date of revision:
    Handle: RePEc:arx:papers:1011.4732

    Contact details of provider:
    Web page: http://arxiv.org/

    Related research

    Keywords:

    This paper has been announced in the following NEP Reports:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:arx:papers:1011.4732. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (arXiv administrators).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.