Advanced Search
MyIDEAS: Login to save this paper or follow this series

A parametrised version of Moser's modifying terms theorem

Contents:

Author Info

  • Wagener, F.O.O.

    ()
    (University of Amsterdam)

Abstract

A sharpened version of Moser's `modifying terms' KAM theorem is derived, and it is shown how this theorem can be used to investigate the persistence of invariant tori in general situations, including those where some of the Floquet exponents of the invariant torus may vanish. The result is `structural' and works for dissipative, Hamiltonian, reversible and symmetric vector fields. These results are derived for the contexts of real analytic, Gevrey regular, ultradifferentiable and finitely differentiable perturbed vector fields. In the first two cases, the conjugacy constructed in the theorem is shown to be Gevrey smooth in the sense of Whitney on the set of parameters satisfying a "Diophantine" non-resonance condition.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www1.fee.uva.nl/cendef/publications/papers/parmoser.pdf
Download Restriction: no

Bibliographic Info

Paper provided by Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance in its series CeNDEF Working Papers with number 09-06.

as in new window
Length:
Date of creation: 2009
Date of revision:
Handle: RePEc:ams:ndfwpp:09-06

Contact details of provider:
Postal: Dept. of Economics and Econometrics, Universiteit van Amsterdam, Roetersstraat 11, NL - 1018 WB Amsterdam, The Netherlands
Phone: + 31 20 525 52 58
Fax: + 31 20 525 52 83
Email:
Web page: http://www.fee.uva.nl/cendef/
More information through EDIRC

Related research

Keywords:

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Wagener, F.O.O., 2002. "A Gevrey regular KAM theorem and the inverse approximation lemma," CeNDEF Working Papers, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance 02-04, Universiteit van Amsterdam, Center for Nonlinear Dynamics in Economics and Finance.
Full references (including those not matched with items on IDEAS)

Citations

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:ams:ndfwpp:09-06. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Cees C.G. Diks).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.