IDEAS home Printed from https://ideas.repec.org/p/aiz/louvar/2024001.html
   My bibliography  Save this paper

Affine Heston model style with self-exciting jumps and long memory

Author

Listed:
  • Leunga Njike, Charles Guy

    (Université catholique de Louvain, LIDAM/ISBA, Belgium)

  • Hainaut, Donatien

    (Université catholique de Louvain, LIDAM/ISBA, Belgium)

Abstract

Classic diffusion processes fail to explain asset return volatility. Many empirical findings on asset return time series, such as heavy tails, skewness and volatility clustering, suggest decomposing the volatility of an asset’s return into two components, one caused by a Brownian motion and another by a jump process. We analyze the sensitivity of European call options to memory and self-excitation parameters, underlying price, volatility and jump risks. We expand Heston’s stochastic volatility model by adding to the instantaneous asset prices, a jump component driven by a Hawkes process with a kernel function or memory kernel that is a Fourier transform of a probability measure. This kernel function defines the memory of the asset price process. For instance, if it is fast decreasing, the contagion effect between asset price jumps is limited in time. Otherwise, the processes remember the history of asset price jumps for a long period. To investigate the impact of different rates of decay or types of memory, we consider four probability measures: Laplace, Gaussian, Logistic and Cauchy. Unlike Hawkes processes with exponential kernels, the Markov property is lost but stationarity is preserved; this ensures that the unconditional expected arrival rate of the jump does not explode. In the absence of the Markov property, we use the Fourier transform representation to derive a closed form expression of a European call option price based on characteristic functions. A numerical illustration shows that our extension of the Heston model achieves a better fit of the Euro Stoxx 50 option data than the standard version.

Suggested Citation

  • Leunga Njike, Charles Guy & Hainaut, Donatien, 2024. "Affine Heston model style with self-exciting jumps and long memory," LIDAM Reprints ISBA 2024001, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvar:2024001
    DOI: https://doi.org/10.1007/s10436-023-00436-z
    Note: In: Annals of Finance, 2024
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvar:2024001. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.