IDEAS home Printed from https://ideas.repec.org/p/aiz/louvar/2021053.html
   My bibliography  Save this paper

Measuring dependence between random vectors via optimal transport

Author

Listed:
  • Mordant, Gilles
  • Segers, Johan

    (Université catholique de Louvain, LIDAM/ISBA, Belgium)

Abstract

To quantify the dependence between two random vectors of possibly different dimensions, we propose to rely on the properties of the 2-Wasserstein distance. We first propose two coefficients that are based on the Wasserstein distance between the actual distribution and a reference distribution with independent components. The coefficients are normalized to take values between 0 and 1, where 1 represents the maximal amount of dependence possible given the two multivariate margins. We then make a quasi-Gaussian assumption that yields two additional coefficients rooted in the same ideas as the first two. These different coefficients are more amenable for distributional results and admit attractive formulas in terms of the joint covariance or correlation matrix. Furthermore, maximal dependence is proved to occur at the covariance matrix with minimal von Neumann entropy given the covariance matrices of the two multivariate margins. This result also helps us revisit the RV coefficient by proposing a sharper normalisation. The two coefficients based on the quasi-Gaussian approach can be estimated easily via the empirical covariance matrix. The estimators are asymptotically normal and their asymptotic variances are explicit functions of the covariance matrix, which can thus be estimated consistently too. The results extend to the Gaussian copula case, in which case the estimators are rank-based. The results are illustrated through theoretical examples. Monte Carlo simulations and a case study involving electroencephalography data are proposed in the supplementary material.

Suggested Citation

  • Mordant, Gilles & Segers, Johan, 2021. "Measuring dependence between random vectors via optimal transport," LIDAM Reprints ISBA 2021053, Université catholique de Louvain, Institute of Statistics, Biostatistics and Actuarial Sciences (ISBA).
  • Handle: RePEc:aiz:louvar:2021053
    DOI: https://doi.org/10.1016/j.jmva.2021.104912
    Note: In: Journal of Multivariate Analysis, 2022, vol. 189, 104912
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:aiz:louvar:2021053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Nadja Peiffer (email available below). General contact details of provider: https://edirc.repec.org/data/isuclbe.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.