IDEAS home Printed from https://ideas.repec.org/h/spr/oprchp/978-3-319-55702-1_25.html
   My bibliography  Save this book chapter

Benders Decomposition on Large-Scale Unit Commitment Problems for Medium-Term Power Systems Simulation

In: Operations Research Proceedings 2016

Author

Listed:
  • Andrea Taverna

    (Università Degli Studi di Milano)

Abstract

The Unit Commitment Problem (UCP) aims at finding the optimal commitment for a set of thermal power plants in a Power System (PS) according to some criterion. Our work stems from a collaboration with RSE S.p.A., a major industrial research centre for PSs in Italy. In this context the UCP is formulated as a large-scale MILP spanning countries over a year with hourly resolution to simulate the ideal behaviour of the system in different scenarios. Our goal is to refine existing heuristic solutions to increase simulation reliability. In our previous studies we devised a Column Generation algorithm (CG) which, however, shows numerical instability due to degeneracy in the master problem. Here we evaluate the application of Benders Decomposition (BD), which yields better conditioned subproblems. We also employ Magnanti-Wong cuts and a “two-phases scheme”, which first quickly computes valid cuts by applying BD to the continuous relaxation of the problem and then restores integrality. Experimental results on weekly instances for the Italian system show the objective function to be flat. Even if such a feature worsens convergence, the algorithm is able to reach almost optimal solutions in few iterations.

Suggested Citation

  • Andrea Taverna, 2018. "Benders Decomposition on Large-Scale Unit Commitment Problems for Medium-Term Power Systems Simulation," Operations Research Proceedings, in: Andreas Fink & Armin Fügenschuh & Martin Josef Geiger (ed.), Operations Research Proceedings 2016, pages 179-184, Springer.
  • Handle: RePEc:spr:oprchp:978-3-319-55702-1_25
    DOI: 10.1007/978-3-319-55702-1_25
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:oprchp:978-3-319-55702-1_25. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.