IDEAS home Printed from https://ideas.repec.org/h/spr/lnechp/978-3-642-04045-0_28.html
   My bibliography  Save this book chapter

Using a Gradient Based Method to Seed an EMO Algorithm

In: Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems

Author

Listed:
  • Alfredo G. Hernandez-Diaz

    (Pablo de Olavide University)

  • Carlos A. Coello
  • Fatima Perez
  • Rafael Caballero
  • Julian Molina

Abstract

In the field of single-objective optimization, hybrid variants of gradient based methods and evolutionary algorithms have been shown to performance better than the pure evolutionary method. This same idea has been used with Evolutionary Multiobjective Optimization (EMO), obtaining also very promising results. In most of the cases, gradient information is used as part of the mutation operator, in order to move every generated point to the exact Pareto front. This means that gradient information is used along the whole process, and then consumes computational resources also along the whole process. On the other hand, in our approach we will use gradient information only at the beginning of the process, and will show that quality of the results is not decreased while computational cost is. We will use a steepest descent method to generate some efficient points to be used to seed an EMO method. The main goal will be generating some efficient points in the exact front using the less evaluations as possible, and let the EMO method use these points to spread along the whole Pareto front. In our approach, we will solve box-constrained continuous problems, gradients will be approximated using quadratic regressions and the EMO method will be based on Rough Sets theory Hernandez-Diaz et al. (Parallel Problem Solving from Nature (PPSN IX) 9th International Conference, 2006).

Suggested Citation

  • Alfredo G. Hernandez-Diaz & Carlos A. Coello & Fatima Perez & Rafael Caballero & Julian Molina, 2010. "Using a Gradient Based Method to Seed an EMO Algorithm," Lecture Notes in Economics and Mathematical Systems, in: Matthias Ehrgott & Boris Naujoks & Theodor J. Stewart & Jyrki Wallenius (ed.), Multiple Criteria Decision Making for Sustainable Energy and Transportation Systems, pages 327-337, Springer.
  • Handle: RePEc:spr:lnechp:978-3-642-04045-0_28
    DOI: 10.1007/978-3-642-04045-0_28
    as

    Download full text from publisher

    To our knowledge, this item is not available for download. To find whether it is available, there are three options:
    1. Check below whether another version of this item is available online.
    2. Check on the provider's web page whether it is in fact available.
    3. Perform a search for a similarly titled item that would be available.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:lnechp:978-3-642-04045-0_28. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.