IDEAS home Printed from https://ideas.repec.org/h/spr/circec/v3y2023i3d10.1007_s43615-022-00241-2.html
   My bibliography  Save this book chapter

A New Preparation Method for 3D Bio-composite Filament Manufacturing: a Study on the Effects of Ball Milling on the Cohesion/Adhesion of an Agave tequilana Bagasse/PLA Pellet Mixture

Author

Listed:
  • Mathias Salignon

    (Cranfield University)

  • Simon Gray

    (Cranfield University)

  • Timothy Rose

    (Cranfield University)

  • Adriana Encinas-Oropesa

    (Cranfield University)

Abstract

This study created a composite polymer for 3D printing from agave by-product using mechanical alloying process. The cold milling technique used by the ball mill is a standard procedure to homogenize metallic mixtures. This paper reports results from a series of laboratory tests to create a homogeneous mixture that could be extruded into a printable filament mixture of agave bagasse fibres and PLA pellets by using the kinetic energy of a ball mill. PLA and agave bagasse mixtures in this study were ground several times using this principle; steel and ceramic balls were used to grind them. The results of the study showed that this principle can be effective on a polymer-based mixture; indeed, an adhesion between the pellets and the agave bagasse fibres was obtained. The results showed the different parameters that influence the mixture quality as the milling time, the ball material, the number of balls, the mixture concentration and the rotational speed. Optical and ESEM/EDX analyses have confirmed our expectations about cohesion between fibres pulverized in powder and pellet adhesion, where powder accumulation on all the surfaces was detected. The absence of powder penetration in the pellets allowed us to explain the losses obtained during the process and to find new solutions to reduce them. Proof-of-concept parts were 3D printed with agave bagasse/PLA filaments. Their printed quality can be compared to that of commercial filaments. These results offer new perspectives to reuse agricultural by-products to create composite filament with a chemical-free manufacturing process.

Suggested Citation

  • Mathias Salignon & Simon Gray & Timothy Rose & Adriana Encinas-Oropesa, 2023. "A New Preparation Method for 3D Bio-composite Filament Manufacturing: a Study on the Effects of Ball Milling on the Cohesion/Adhesion of an Agave tequilana Bagasse/PLA Pellet Mixture," Circular Economy and Sustainability,, Springer.
  • Handle: RePEc:spr:circec:v:3:y:2023:i:3:d:10.1007_s43615-022-00241-2
    DOI: 10.1007/s43615-022-00241-2
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s43615-022-00241-2
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s43615-022-00241-2?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:circec:v:3:y:2023:i:3:d:10.1007_s43615-022-00241-2. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.