Advanced Search
MyIDEAS: Login to save this book chapter or follow this series

Learning dynamics

In: Handbook of Macroeconomics

Contents:

Author Info

  • Evans, George W.
  • Honkapohja, Seppo

Abstract

This chapter provides a survey of the recent work on learning in the context of macroeconomics. Learning has several roles. First, it provides a boundedly rational model of how rational expectations can be achieved. Secondly, learning acts as a selection device in models with multiple REE (rational expectations equilibria). Third, the learning dynamics themselves may be of interest. While there are various approaches to learning in macroeconomics, the emphasis here is on adaptive learning schemes in which agents use statistical or econometric techniques in self-referential stochastic systems.Careful attention is given to learning in models with multiple equilibria. The methodological tool is to set up the economic system under learning as a SRA (stochastic recursive algorithm) and to analyze convergence by the method of stochastic approximation based on an associated differential equation. Global stability, local stability and instability results for SRAs are presented. For a wide range of solutions to economic models the stability conditions for REE under statistical learning rules are given by the expectational stability principle, which is treated as a unifying principle for the results presented.Both linear and nonlinear economic models are considered and in the univariate linear case the full set of solutions is discussed. Applications include the Muth cobweb model, the Cagan model of inflation, asset pricing with risk neutrality, the overlapping generations model, the seignorage model of inflation, models with increasing social returns, IS-LM-Phillips curve models, the overlapping contract model, and the Real Business Cycle model. Particular attention is given to the local stability conditions for convergence when there are indeterminacies, bubbles, multiple steady states, cycles or sunspot solutions.The survey also discusses alternative approaches and recent developments, including Bayesian learning, eductive approaches, genetic algorithms, heterogeneity, misspecified models and experimental evidence.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/B7P5X-4FD73BS-B/2/e3c6259a7ac67c3f7f727a491f98a25a
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

as in new window

This chapter was published in:

  • J. B. Taylor & M. Woodford (ed.), 1999. "Handbook of Macroeconomics," Handbook of Macroeconomics, Elsevier, edition 1, volume 1, number 1.
    This item is provided by Elsevier in its series Handbook of Macroeconomics with number 1-07.

    Handle: RePEc:eee:macchp:1-07

    Contact details of provider:
    Web page: http://www.elsevier.com/wps/find/bookseriesdescription.cws_home/BS_HE/description

    Related research

    Keywords:

    Find related papers by JEL classification:

    References

    No references listed on IDEAS
    You can help add them by filling out this form.

    Citations

    Blog mentions

    As found by EconAcademics.org, the blog aggregator for Economics research:
    1. Sampling Out of What?
      by Agent Continuum in Agent Continuum on 2009-12-05 22:19:36
    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    This item has more than 25 citations. To prevent cluttering this page, these citations are listed on a separate page.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:macchp:1-07. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.