IDEAS home Printed from https://ideas.repec.org/a/zib/zbnecr/v5y2022i1p23-30.html
   My bibliography  Save this article

Profile Composition And Risk Evaluation Of Pahs In Borehole Water From Amassoma, Bayelsa State, Nigeria

Author

Listed:
  • Kaywood Elijah Leizou

    (Department of Chemical Sciences, Niger Delta University, Wilberforce Island, P.M.B 071, Yenagoa, Nigeria.)

  • Muhammad Aqeel Ashraf

    (International Water, Air & Soil Conservation Society INWASCON 59200 Kuala Lumpur, Malaysia)

Abstract

Water is an essential and indispensable natural resource. The most important to human endeavors, ecosystem and all living things. Thus, this study was carried out to determine the levels of concentration of sixteen (16) priority pollutants (PAHs) in borehole water from Amassoma, Bayelsa state. The PAH concentrations in the borehole water samples was performed using GC–MS method. The total PAHs concentration ranged from 0.003 – 0.364mg/l with a mean value of 0.132mg/l. Dibenzo(a,h)anthracene had the highest individual PAH concentration of 0.164mg/l. PAH accumulation in the environment and Toxic equivalency factor (TEF) used to estimate relative toxicity of a PAH compared to that of BaP, principal component analysis and pearson’s correlation was employed. Pearson correlation matrice analysis reveals a positive correlation between the PAHs; this could indicate a common source for some of the PAHs, however, some were negatively correlated with each other. This behavior could indicate non-point source. Six principal component accounting for 88% of the entire variance were extracted. A comparative analysis of PAHs concentrations in the water samples with maximum allowable concentration (MAC) standards revealed that the results obtained in this study were within the permissible levels except for Ind(1,2,3-cd) P and DbahA, however, carcinogen PAHs present in the water of the Amassoma axis, Nun River may pose a threat to human health. PAH fingerprint ratios for determining both petrogenic and pyrogenic (pyrolytic) PAH accumulation such as (Ant/(Ant+Phe), BaA/(BaA+Chr), and ∑▒〖LMW/∑▒HMW〗) ratios was employed. The PAH diagnostic ratio indicates that within the Amassoma Town was of mixed ratios, petroleum (petrogenic) and combustion (pyrogenic) sources and grass/wood/straw combustion sources. This is a clarion call on policy makers and necessary regulatory authorities to step up.

Suggested Citation

  • Kaywood Elijah Leizou & Muhammad Aqeel Ashraf, 2022. "Profile Composition And Risk Evaluation Of Pahs In Borehole Water From Amassoma, Bayelsa State, Nigeria," Environmental Contaminants Reviews (ECR), Zibeline International Publishing, vol. 5(1), pages 23-30, March.
  • Handle: RePEc:zib:zbnecr:v:5:y:2022:i:1:p:23-30
    DOI: 10.26480/ecr.01.2022.23.30
    as

    Download full text from publisher

    File URL: https://contaminantsreviews.com/paper/1ecr2022/1ecr2022-23-30.pdf
    Download Restriction: no

    File URL: https://libkey.io/10.26480/ecr.01.2022.23.30?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Wei Cao & Liqin Yin & Dan Zhang & Yingying Wang & Jing Yuan & Yi Zhu & Junfeng Dou, 2019. "Contamination, Sources, and Health Risks Associated with Soil PAHs in Rebuilt Land from a Coking Plant, Beijing, China," IJERPH, MDPI, vol. 16(4), pages 1-16, February.
    2. Batdelger Byambaa & Lu Yang & Atsushi Matsuki & Edward G. Nagato & Khongor Gankhuyag & Byambatseren Chuluunpurev & Lkhagvajargal Banzragch & Sonomdagva Chonokhuu & Ning Tang & Kazuichi Hayakawa, 2019. "Sources and Characteristics of Polycyclic Aromatic Hydrocarbons in Ambient Total Suspended Particles in Ulaanbaatar City, Mongolia," IJERPH, MDPI, vol. 16(3), pages 1-16, February.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chaocan Li & Xiaopeng Zhang & Xuqin Wang & Xinbo Zhang & Shigang Liu & Ting Yuan & Weigui Qu & Youjun Zhang, 2022. "Distribution Characteristics and Potential Risks of Polycyclic Aromatic Hydrocarbon (PAH) Pollution at a Typical Industrial Legacy Site in Tianjin, North China," Land, MDPI, vol. 11(10), pages 1-16, October.
    2. Lu Yang & Quanyu Zhou & Hao Zhang & Xuan Zhang & Wanli Xing & Yan Wang & Pengchu Bai & Masahito Yamauchi & Tetsuji Chohji & Lulu Zhang & Kazuichi Hayakawa & Akira Toriba & Ning Tang, 2021. "Atmospheric Behaviour of Polycyclic and Nitro-Polycyclic Aromatic Hydrocarbons and Water-Soluble Inorganic Ions in Winter in Kirishima, a Typical Japanese Commercial City," IJERPH, MDPI, vol. 18(2), pages 1-14, January.
    3. Minkyung Kang & Kiae Kim & Narae Choi & Yong Pyo Kim & Ji Yi Lee, 2020. "Recent Occurrence of PAHs and n-Alkanes in PM2.5 in Seoul, Korea and Characteristics of Their Sources and Toxicity," IJERPH, MDPI, vol. 17(4), pages 1-17, February.
    4. Ruiyuan Zhang & Youqi Wang & Yuhan Zhang & Yiru Bai, 2023. "Distribution, Sources, and Health Risk of Polycyclic Aromatic Hydrocarbons in Farmland Soil of Helan, China," Sustainability, MDPI, vol. 15(24), pages 1-17, December.
    5. Yujie Pan & Hongxia Peng & Shuyun Xie & Min Zeng & Changsheng Huang, 2019. "Eight Elements in Soils from a Typical Light Industrial City, China: Spatial Distribution, Ecological Assessment, and the Source Apportionment," IJERPH, MDPI, vol. 16(14), pages 1-17, July.
    6. Takashi Kubo & Wenzhi Bai & Masaki Nagae & Yuji Takao, 2020. "Seasonal Fluctuation of Polycyclic Aromatic Hydrocarbons and Aerosol Genotoxicity in Long-Range Transported Air Mass Observed at the Western End of Japan," IJERPH, MDPI, vol. 17(4), pages 1-15, February.
    7. Rodrigo Mundo & Tetsuya Matsunaka & Hisanori Iwai & Shouzo Ogiso & Nobuo Suzuki & Ning Tang & Kazuichi Hayakawa & Seiya Nagao, 2020. "Interannual Survey on Polycyclic Aromatic Hydrocarbons (PAHs) in Seawater of North Nanao Bay, Ishikawa, Japan, from 2015 to 2018: Sources, Pathways and Ecological Risk Assessment," IJERPH, MDPI, vol. 17(3), pages 1-15, February.
    8. Yumin Yuan & Kai Yang & Lirong Cheng & Yijuan Bai & Yingying Wang & Ying Hou & Aizhong Ding, 2022. "Effect of Normalization Methods on Accuracy of Estimating Low- and High-Molecular Weight PAHs Distribution in the Soils of a Coking Plant," IJERPH, MDPI, vol. 19(23), pages 1-13, November.
    9. Lu Yang & Lulu Zhang & Hao Zhang & Quanyu Zhou & Xuan Zhang & Wanli Xing & Akinori Takami & Kei Sato & Atsushi Shimizu & Ayako Yoshino & Naoki Kaneyasu & Atsushi Matsuki & Kazuichi Hayakawa & Akira To, 2020. "Comparative Analysis of PM 2.5 -Bound Polycyclic Aromatic Hydrocarbons (PAHs), Nitro-PAHs (NPAHs), and Water-Soluble Inorganic Ions (WSIIs) at Two Background Sites in Japan," IJERPH, MDPI, vol. 17(21), pages 1-16, November.
    10. Dongxiang Chen & Han Zhao & Jun Zhao & Zhenci Xu & Shaohua Wu, 2020. "Mapping the Finer-Scale Carcinogenic Risk of Polycyclic Aromatic Hydrocarbons (PAHs) in Urban Soil—A Case Study of Shenzhen City, China," IJERPH, MDPI, vol. 17(18), pages 1-13, September.
    11. Yan Wang & Hao Zhang & Xuan Zhang & Pengchu Bai & Andrey Neroda & Vassily F. Mishukov & Lulu Zhang & Kazuichi Hayakawa & Seiya Nagao & Ning Tang, 2022. "PM-Bound Polycyclic Aromatic Hydrocarbons and Nitro-Polycyclic Aromatic Hydrocarbons in the Ambient Air of Vladivostok: Seasonal Variation, Sources, Health Risk Assessment and Long-Term Variability," IJERPH, MDPI, vol. 19(5), pages 1-13, March.
    12. Li Ji & Wenwen Li & Yuan Li & Qiusheng He & Yonghong Bi & Minghua Zhang & Guixiang Zhang & Xinming Wang, 2022. "Spatial Distribution, Potential Sources, and Health Risk of Polycyclic Aromatic Hydrocarbons (PAHs) in the Surface Soils under Different Land-Use Covers of Shanxi Province, North China," IJERPH, MDPI, vol. 19(19), pages 1-14, September.
    13. Di Wang & Shilei Zhu & Lijing Wang & Qing Zhen & Fengpeng Han & Xingchang Zhang, 2020. "Distribution, Origins and Hazardous Effects of Polycyclic Aromatic Hydrocarbons in Topsoil Surrounding Oil Fields: A Case Study on the Loess Plateau, China," IJERPH, MDPI, vol. 17(4), pages 1-14, February.
    14. Nor Ashikin Sopian & Juliana Jalaludin & Suhaili Abu Bakar & Titi Rahmawati Hamedon & Mohd Talib Latif, 2021. "Exposure to Particulate PAHs on Potential Genotoxicity and Cancer Risk among School Children Living Near the Petrochemical Industry," IJERPH, MDPI, vol. 18(5), pages 1-20, March.
    15. Kaywood Elijah Leizou & Gift Cornelius Timighe & Muhammad Aqeel Ashraf, 2022. "Pah Exposition And Carcinogenicity Risk Evaluation In Soils From Niger Delta, Nigeria," Environmental Contaminants Reviews (ECR), Zibeline International Publishing, vol. 5(1), pages 35-39, March.
    16. Lu Yang & Hao Zhang & Xuan Zhang & Wanli Xing & Yan Wang & Pengchu Bai & Lulu Zhang & Kazuichi Hayakawa & Akira Toriba & Ning Tang, 2021. "Exposure to Atmospheric Particulate Matter-Bound Polycyclic Aromatic Hydrocarbons and Their Health Effects: A Review," IJERPH, MDPI, vol. 18(4), pages 1-25, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:zib:zbnecr:v:5:y:2022:i:1:p:23-30. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Zibeline International Publishing (email available below). General contact details of provider: https://contaminantsreviews.com/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.