IDEAS home Printed from https://ideas.repec.org/a/wsi/ijtafx/v21y2018i07ns0219024918500413.html
   My bibliography  Save this article

Catastrophe Insurance Derivatives Pricing Using A Cox Process With Jump Diffusion Cir Intensity

Author

Listed:
  • JIWOOK JANG

    (Department of Actuarial Studies and Business Analytics, Faculty of Business and Economics, Macquarie University, Sydney NSW 2109, Australia)

  • JONG JUN PARK

    (Department of Mathematical Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea)

  • HYUN JIN JANG

    (School of Business Administration, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea)

Abstract

We propose an analytical pricing method for stop-loss reinsurance contracts and catastrophe insurance derivatives using a Cox process with jump diffusion Cox–Ingersoll–Ross (CIR) intensity. The expected payoff of these contracts is expressed by the Laplace transform of the integration of the jump diffusion CIR process and the first moment of the aggregate loss. To confirm that the proposed analytical formula provides stable and accurate insurance derivative prices, we simulate them using a full Monte Carlo method compared to those obtained from its theoretical expectation. It shows that it is much faster way to obtain them than the full Monte Carlo method. We also conduct sensitivity analysis by changing the relevant parameters in the loss intensity providing their figures.

Suggested Citation

  • Jiwook Jang & Jong Jun Park & Hyun Jin Jang, 2018. "Catastrophe Insurance Derivatives Pricing Using A Cox Process With Jump Diffusion Cir Intensity," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 21(07), pages 1-20, November.
  • Handle: RePEc:wsi:ijtafx:v:21:y:2018:i:07:n:s0219024918500413
    DOI: 10.1142/S0219024918500413
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0219024918500413
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0219024918500413?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Basu, Sankarshan & Dassios, Angelos, 2002. "A Cox process with log-normal intensity," Insurance: Mathematics and Economics, Elsevier, vol. 31(2), pages 297-302, October.
    2. Ning Cai & S. G. Kou, 2011. "Option Pricing Under a Mixed-Exponential Jump Diffusion Model," Management Science, INFORMS, vol. 57(11), pages 2067-2081, November.
    3. John C. Cox & Jonathan E. Ingersoll Jr. & Stephen A. Ross, 2005. "A Theory Of The Term Structure Of Interest Rates," World Scientific Book Chapters, in: Sudipto Bhattacharya & George M Constantinides (ed.), Theory Of Valuation, chapter 5, pages 129-164, World Scientific Publishing Co. Pte. Ltd..
    4. Wendong Zheng & Chi Hung Yuen & Yue Kuen Kwok, 2016. "Recursive Algorithms For Pricing Discrete Variance Options And Volatility Swaps Under Time-Changed Lévy Processes," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 19(02), pages 1-29, March.
    5. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," The Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    6. Bara Kim & In-Suk Wee, 2014. "Pricing of geometric Asian options under Heston's stochastic volatility model," Quantitative Finance, Taylor & Francis Journals, vol. 14(10), pages 1795-1809, October.
    7. Chung, Shing Fung & Wong, Hoi Ying, 2014. "Analytical pricing of discrete arithmetic Asian options with mean reversion and jumps," Journal of Banking & Finance, Elsevier, vol. 44(C), pages 130-140.
    8. Jang, Jiwook, 2007. "Jump diffusion processes and their applications in insurance and finance," Insurance: Mathematics and Economics, Elsevier, vol. 41(1), pages 62-70, July.
    9. Dassios, Angelos & Jang, Jiwook, 2003. "Pricing of catastrophe reinsurance and derivatives using the Cox process with shot noise intensity," LSE Research Online Documents on Economics 2849, London School of Economics and Political Science, LSE Library.
    10. Min-Ku Lee & Jeong-Hoon Kim & Kyu-Hwan Jang, 2014. "Pricing Arithmetic Asian Options under Hybrid Stochastic and Local Volatility," Journal of Applied Mathematics, Hindawi, vol. 2014, pages 1-8, January.
    11. Ning Cai & Steven Kou, 2012. "Pricing Asian Options Under a Hyper-Exponential Jump Diffusion Model," Operations Research, INFORMS, vol. 60(1), pages 64-77, February.
    12. Macci, Claudio & Torrisi, Giovanni Luca, 2011. "Risk processes with shot noise Cox claim number process and reserve dependent premium rate," Insurance: Mathematics and Economics, Elsevier, vol. 48(1), pages 134-145, January.
    13. Basu, Sankarshan & Dassios, Angelos, 2002. "A Cox process with log-normal intensity," LSE Research Online Documents on Economics 16375, London School of Economics and Political Science, LSE Library.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Park, Jong Jun & Jang, Hyun Jin & Jang, Jiwook, 2020. "Pricing arithmetic Asian options under jump diffusion CIR processes," Finance Research Letters, Elsevier, vol. 34(C).
    2. Teng, Ye & Zhang, Zhimin, 2023. "Finite-time expected present value of operating costs until ruin in a Cox risk model with periodic observation," Applied Mathematics and Computation, Elsevier, vol. 452(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jang, Jiwook & Qu, Yan & Zhao, Hongbiao & Dassios, Angelos, 2023. "A Cox model for gradually disappearing events," LSE Research Online Documents on Economics 112754, London School of Economics and Political Science, LSE Library.
    2. Chenxu Li, 2016. "Bessel Processes, Stochastic Volatility, And Timer Options," Mathematical Finance, Wiley Blackwell, vol. 26(1), pages 122-148, January.
    3. Xingchun Wang, 2020. "Analytical valuation of Asian options with counterparty risk under stochastic volatility models," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 40(3), pages 410-429, March.
    4. Braun, Alexander, 2011. "Pricing catastrophe swaps: A contingent claims approach," Insurance: Mathematics and Economics, Elsevier, vol. 49(3), pages 520-536.
    5. Alan Genaro & Adilson Simonis, 2015. "Estimating doubly stochastic Poisson process with affine intensities by Kalman filter," Statistical Papers, Springer, vol. 56(3), pages 723-748, August.
    6. Rehez Ahlip & Laurence A. F. Park & Ante Prodan, 2017. "Pricing currency options in the Heston/CIR double exponential jump-diffusion model," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 4(01), pages 1-30, March.
    7. Yanhong Zhong & Guohe Deng, 2019. "Geometric Asian Options Pricing under the Double Heston Stochastic Volatility Model with Stochastic Interest Rate," Complexity, Hindawi, vol. 2019, pages 1-13, January.
    8. Angelos Dassios & Jiwook Jang & Hongbiao Zhao, 2019. "A Generalised CIR Process with Externally-Exciting and Self-Exciting Jumps and Its Applications in Insurance and Finance," Risks, MDPI, vol. 7(4), pages 1-18, October.
    9. Alan De Genaro Dario & Adilson Simonis, 2011. "Properties of Doubly Stochastic Poisson Process with affine intensity," Papers 1109.2884, arXiv.org, revised Sep 2011.
    10. Marcos Escobar & Peter Hieber & Matthias Scherer, 2014. "Efficiently pricing double barrier derivatives in stochastic volatility models," Review of Derivatives Research, Springer, vol. 17(2), pages 191-216, July.
    11. Kim, See-Woo & Kim, Jeong-Hoon, 2018. "Analytic solutions for variance swaps with double-mean-reverting volatility," Chaos, Solitons & Fractals, Elsevier, vol. 114(C), pages 130-144.
    12. Park, Jong Jun & Jang, Hyun Jin & Jang, Jiwook, 2020. "Pricing arithmetic Asian options under jump diffusion CIR processes," Finance Research Letters, Elsevier, vol. 34(C).
    13. Dassios, Angelos & Jang, Jiwook & Zhao, Hongbiao, 2019. "A generalised CIR process with externally-exciting and self-exciting jumps and its applications in insurance and finance," LSE Research Online Documents on Economics 102043, London School of Economics and Political Science, LSE Library.
    14. Yiqing Chen, 2019. "A Renewal Shot Noise Process with Subexponential Shot Marks," Risks, MDPI, vol. 7(2), pages 1-8, June.
    15. Shi, Chao, 2022. "Asymptotic Analysis of the Mixed-Exponential Jump Diffusion Model and Its Financial Applications," Journal of Economic Dynamics and Control, Elsevier, vol. 143(C).
    16. Dassios, Angelos & Zhao, Hongbiao, 2017. "Efficient simulation of clustering jumps with CIR intensity," LSE Research Online Documents on Economics 74205, London School of Economics and Political Science, LSE Library.
    17. Angelos Dassios & Hongbiao Zhao, 2017. "Efficient Simulation of Clustering Jumps with CIR Intensity," Operations Research, INFORMS, vol. 65(6), pages 1494-1515, December.
    18. Darren Shannon & Grigorios Fountas, 2021. "Extending the Heston Model to Forecast Motor Vehicle Collision Rates," Papers 2104.11461, arXiv.org, revised May 2021.
    19. Yang, Nian & Chen, Nan & Wan, Xiangwei, 2019. "A new delta expansion for multivariate diffusions via the Itô-Taylor expansion," Journal of Econometrics, Elsevier, vol. 209(2), pages 256-288.
    20. Chenxu Li, 2014. "Closed-Form Expansion, Conditional Expectation, and Option Valuation," Mathematics of Operations Research, INFORMS, vol. 39(2), pages 487-516, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:ijtafx:v:21:y:2018:i:07:n:s0219024918500413. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/ijtaf/ijtaf.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.