IDEAS home Printed from https://ideas.repec.org/a/wsi/apjorx/v35y2018i04ns0217595918500276.html
   My bibliography  Save this article

A New Proof for Global Convergence of a Smoothing Homotopy Method for the Nonlinear Complementarity Problem

Author

Listed:
  • Xiaona Fan

    (School of Science, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P. R. China)

  • Qinglun Yan

    (School of Science, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, P. R. China)

Abstract

In this paper, we propose a new proof for smoothing homotopy method based on the Fischer–Burmeister function to solve the nonlinear complementarity problem under a nonmonotone solution condition. Under this assumption condition imposed on the defined mapping F, global convergence of a smooth curve determined by the referred homotopy equation is established for almost all initial points in R+n and it is actually regarded as an interior point method. Besides, if the initial point is expanded to Rn, the global convergence of the homotopy method is ensured under a similar condition. The numerical results are reported and illustrate that the method is efficient for some nonlinear complementarity problems.

Suggested Citation

  • Xiaona Fan & Qinglun Yan, 2018. "A New Proof for Global Convergence of a Smoothing Homotopy Method for the Nonlinear Complementarity Problem," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 35(04), pages 1-13, August.
  • Handle: RePEc:wsi:apjorx:v:35:y:2018:i:04:n:s0217595918500276
    DOI: 10.1142/S0217595918500276
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0217595918500276
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0217595918500276?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. L. Qi & D. Sun, 2002. "Smoothing Functions and Smoothing Newton Method for Complementarity and Variational Inequality Problems," Journal of Optimization Theory and Applications, Springer, vol. 113(1), pages 121-147, April.
    2. Shao-Jian Qu & Mark Goh & Xiujie Zhang, 2011. "A new hybrid method for nonlinear complementarity problems," Computational Optimization and Applications, Springer, vol. 49(3), pages 493-520, July.
    3. Bilian Chen & Changfeng Ma, 2011. "A new smoothing Broyden-like method for solving nonlinear complementarity problem with a P 0 -function," Journal of Global Optimization, Springer, vol. 51(3), pages 473-495, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sanja Rapajić & Zoltan Papp, 2017. "A nonmonotone Jacobian smoothing inexact Newton method for NCP," Computational Optimization and Applications, Springer, vol. 66(3), pages 507-532, April.
    2. Qu, Shaojian & Ji, Ying & Jiang, Jianlin & Zhang, Qingpu, 2017. "Nonmonotone gradient methods for vector optimization with a portfolio optimization application," European Journal of Operational Research, Elsevier, vol. 263(2), pages 356-366.
    3. C. Zhang & Q. J. Wei, 2009. "Global and Finite Convergence of a Generalized Newton Method for Absolute Value Equations," Journal of Optimization Theory and Applications, Springer, vol. 143(2), pages 391-403, November.
    4. Jingyong Tang & Jinchuan Zhou, 2021. "A smoothing quasi-Newton method for solving general second-order cone complementarity problems," Journal of Global Optimization, Springer, vol. 80(2), pages 415-438, June.
    5. Zhengyong Zhou & Yunchan Peng, 2019. "The locally Chen–Harker–Kanzow–Smale smoothing functions for mixed complementarity problems," Journal of Global Optimization, Springer, vol. 74(1), pages 169-193, May.
    6. Pin-Bo Chen & Gui-Hua Lin & Xide Zhu & Fusheng Bai, 2021. "Smoothing Newton method for nonsmooth second-order cone complementarity problems with application to electric power markets," Journal of Global Optimization, Springer, vol. 80(3), pages 635-659, July.
    7. Louis Caccetta & Biao Qu & Guanglu Zhou, 2011. "A globally and quadratically convergent method for absolute value equations," Computational Optimization and Applications, Springer, vol. 48(1), pages 45-58, January.
    8. Nina Ovcharova & Joachim Gwinner, 2014. "A Study of Regularization Techniques of Nondifferentiable Optimization in View of Application to Hemivariational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 162(3), pages 754-778, September.
    9. Jinhai Chen & Herschel Rabitz, 2019. "On Lifting Operators and Regularity of Nonsmooth Newton Methods for Optimal Control Problems of Differential Algebraic Equations," Journal of Optimization Theory and Applications, Springer, vol. 180(2), pages 518-535, February.
    10. Zhengyong Zhou & Bo Yu, 2014. "A smoothing homotopy method for variational inequality problems on polyhedral convex sets," Journal of Global Optimization, Springer, vol. 58(1), pages 151-168, January.
    11. Kamil A. Khan & Harry A. J. Watson & Paul I. Barton, 2017. "Differentiable McCormick relaxations," Journal of Global Optimization, Springer, vol. 67(4), pages 687-729, April.
    12. Chen Ling & Hongxia Yin & Guanglu Zhou, 2011. "A smoothing Newton-type method for solving the L 2 spectral estimation problem with lower and upper bounds," Computational Optimization and Applications, Springer, vol. 50(2), pages 351-378, October.
    13. Jingyong Tang & Jinchuan Zhou & Zhongfeng Sun, 2023. "A derivative-free line search technique for Broyden-like method with applications to NCP, wLCP and SI," Annals of Operations Research, Springer, vol. 321(1), pages 541-564, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:apjorx:v:35:y:2018:i:04:n:s0217595918500276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/apjor/apjor.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.