IDEAS home Printed from https://ideas.repec.org/a/wsi/apjorx/v27y2010i01ns0217595910002569.html
   My bibliography  Save this article

Sample Average Approximation Methods For A Class Of Stochastic Variational Inequality Problems

Author

Listed:
  • HUIFU XU

    (School of Mathematics, University of Southampton, Southampton, SO17 1BJ, UK)

Abstract

In this paper we apply the well known sample average approximation (SAA) method to solve a class of stochastic variational inequality problems (SVIPs). We investigate the existence and convergence of a solution to the sample average approximated SVIP. Under some moderate conditions, we show that the sample average approximated SVIP has a solution with probability one and with probability approaching one exponentially fast with the increase of sample size, the solution converges to its true counterpart. Finally, we apply the existence and convergence results to SAA method for solving a class of stochastic nonlinear complementarity problems and stochastic programs with stochastic constraints.

Suggested Citation

  • Huifu Xu, 2010. "Sample Average Approximation Methods For A Class Of Stochastic Variational Inequality Problems," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 27(01), pages 103-119.
  • Handle: RePEc:wsi:apjorx:v:27:y:2010:i:01:n:s0217595910002569
    DOI: 10.1142/S0217595910002569
    as

    Download full text from publisher

    File URL: http://www.worldscientific.com/doi/abs/10.1142/S0217595910002569
    Download Restriction: Access to full text is restricted to subscribers

    File URL: https://libkey.io/10.1142/S0217595910002569?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shu Lu & Amarjit Budhiraja, 2013. "Confidence Regions for Stochastic Variational Inequalities," Mathematics of Operations Research, INFORMS, vol. 38(3), pages 545-568, August.
    2. Xiao-Juan Zhang & Xue-Wu Du & Zhen-Ping Yang & Gui-Hua Lin, 2019. "An Infeasible Stochastic Approximation and Projection Algorithm for Stochastic Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 183(3), pages 1053-1076, December.
    3. Aswin Kannan & Uday V. Shanbhag, 2019. "Optimal stochastic extragradient schemes for pseudomonotone stochastic variational inequality problems and their variants," Computational Optimization and Applications, Springer, vol. 74(3), pages 779-820, December.
    4. Jie Jiang & Hailin Sun, 2023. "Monotonicity and Complexity of Multistage Stochastic Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 196(2), pages 433-460, February.
    5. Joachim Gwinner & Fabio Raciti, 2012. "Some equilibrium problems under uncertainty and random variational inequalities," Annals of Operations Research, Springer, vol. 200(1), pages 299-319, November.
    6. Xingbang Cui & Jie Sun & Liping Zhang, 2023. "On Multistage Pseudomonotone Stochastic Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 199(1), pages 363-391, October.
    7. Min Li & Chao Zhang, 2020. "Two-Stage Stochastic Variational Inequality Arising from Stochastic Programming," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 324-343, July.
    8. Wei Ouyang & Kui Mei, 2023. "Quantitative Stability of Optimization Problems with Stochastic Constraints," Mathematics, MDPI, vol. 11(18), pages 1-13, September.
    9. Shen Peng & Jie Jiang, 2021. "Stochastic mathematical programs with probabilistic complementarity constraints: SAA and distributionally robust approaches," Computational Optimization and Applications, Springer, vol. 80(1), pages 153-184, September.
    10. B. Jadamba & F. Raciti, 2015. "Variational Inequality Approach to Stochastic Nash Equilibrium Problems with an Application to Cournot Oligopoly," Journal of Optimization Theory and Applications, Springer, vol. 165(3), pages 1050-1070, June.
    11. Fang Lu & Shengjie Li & Jing Yang, 2015. "Convergence analysis of weighted expected residual method for nonlinear stochastic variational inequality problems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 82(2), pages 229-242, October.
    12. Shuang Chen & Li-Ping Pang & Xue-Fei Ma & Dan Li, 2016. "SAA method based on modified Newton method for stochastic variational inequality with second-order cone constraints and application in portfolio optimization," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 84(1), pages 129-154, August.
    13. Yong Zhao & Jin Zhang & Xinmin Yang & Gui-Hua Lin, 2017. "Expected Residual Minimization Formulation for a Class of Stochastic Vector Variational Inequalities," Journal of Optimization Theory and Applications, Springer, vol. 175(2), pages 545-566, November.
    14. Lu, Fang & Li, Sheng-jie, 2015. "Method of weighted expected residual for solving stochastic variational inequality problems," Applied Mathematics and Computation, Elsevier, vol. 269(C), pages 651-663.
    15. Pang, Li-Ping & Chen, Shuang & Wang, Jin-He, 2015. "Risk management in portfolio applications of non-convex stochastic programming," Applied Mathematics and Computation, Elsevier, vol. 258(C), pages 565-575.
    16. Huifu Xu & Dali Zhang, 2013. "Stochastic Nash equilibrium problems: sample average approximation and applications," Computational Optimization and Applications, Springer, vol. 55(3), pages 597-645, July.
    17. Shuang Lin & Jie Zhang & Chen Qiu, 2023. "Asymptotic Analysis for One-Stage Stochastic Linear Complementarity Problems and Applications," Mathematics, MDPI, vol. 11(2), pages 1-14, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wsi:apjorx:v:27:y:2010:i:01:n:s0217595910002569. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Tai Tone Lim (email available below). General contact details of provider: http://www.worldscinet.com/apjor/apjor.shtml .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.