IDEAS home Printed from https://ideas.repec.org/a/wly/syseng/v22y2019i5p389-400.html
   My bibliography  Save this article

Achieving resiliency in major defense programs through nonfunctional attributes

Author

Listed:
  • James R. Enos

Abstract

This article examines how the ilities, or nonfunctional attributes, help to understand the concept of resiliency in engineered systems. For engineered systems, resiliency describes the ability of a system to react to and return to full function after an interruption to system operation. The literature on resiliency of engineered systems defines resiliency in both the context of mission and platform resiliency; however, it leaves an opportunity to research how to understand, manage, and achieve resiliency. This work proposes an application of the systems engineering ilities to resiliency to understand how systems engineers can account for resiliency in the design process and incorporate resiliency into systems. Quality, robustness, and agility assist in understanding the components of resiliency and the ilities of repairability, extensibility, flexibility, adaptability, and versatility provide means for systems to achieve resiliency. This article applies this framework to examine two cases of DoD systems, the B‐52 bomber and the F‐117 stealth fighter. These two examples demonstrate how nonfunctional attributes enable engineered systems to achieve resiliency and help to better understand the concept of resiliency in engineered systems.

Suggested Citation

  • James R. Enos, 2019. "Achieving resiliency in major defense programs through nonfunctional attributes," Systems Engineering, John Wiley & Sons, vol. 22(5), pages 389-400, September.
  • Handle: RePEc:wly:syseng:v:22:y:2019:i:5:p:389-400
    DOI: 10.1002/sys.21488
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/sys.21488
    Download Restriction: no

    File URL: https://libkey.io/10.1002/sys.21488?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Maciejewski, Henryk & Caban, Dariusz, 2008. "Estimation of repairable system availability within fixed time horizon," Reliability Engineering and System Safety, Elsevier, vol. 93(1), pages 100-106.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Følstad, Eirik L. & Helvik, Bjarne E., 2016. "The cost for meeting SLA dependability requirements; implications for customers and providers," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 136-146.
    2. Min Xie & Chengjie Xiong & Szu-Hui Ng, 2014. "A study of N-version programming and its impact on software availability," International Journal of Systems Science, Taylor & Francis Journals, vol. 45(10), pages 2145-2157, October.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:syseng:v:22:y:2019:i:5:p:389-400. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6858 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.