IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v38y2018i8p1534-1540.html
   My bibliography  Save this article

A Framework to Understand Extreme Space Weather Event Probability

Author

Listed:
  • Seth Jonas
  • Kassandra Fronczyk
  • Lucas M. Pratt

Abstract

An extreme space weather event has the potential to disrupt or damage infrastructure systems and technologies that many societies rely on for economic and social well‐being. Space weather events occur regularly, but extreme events are less frequent, with a small number of historical examples over the last 160 years. During the past decade, published works have (1) examined the physical characteristics of the extreme historical events and (2) discussed the probability or return rate of select extreme geomagnetic disturbances, including the 1859 Carrington event. Here we present initial findings on a unified framework approach to visualize space weather event probability, using a Bayesian model average, in the context of historical extreme events. We present disturbance storm time (Dst) probability (a proxy for geomagnetic disturbance intensity) across multiple return periods and discuss parameters of interest to policymakers and planners in the context of past extreme space weather events. We discuss the current state of these analyses, their utility to policymakers and planners, the current limitations when compared to other hazards, and several gaps that need to be filled to enhance space weather risk assessments.

Suggested Citation

  • Seth Jonas & Kassandra Fronczyk & Lucas M. Pratt, 2018. "A Framework to Understand Extreme Space Weather Event Probability," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1534-1540, August.
  • Handle: RePEc:wly:riskan:v:38:y:2018:i:8:p:1534-1540
    DOI: 10.1111/risa.12981
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12981
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12981?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Edward J. Oughton & Mike Hapgood & Gemma S. Richardson & Ciarán D. Beggan & Alan W. P. Thomson & Mark Gibbs & Catherine Burnett & C. Trevor Gaunt & Markos Trichas & Rabia Dada & Richard B. Horne, 2019. "A Risk Assessment Framework for the Socioeconomic Impacts of Electricity Transmission Infrastructure Failure Due to Space Weather: An Application to the United Kingdom," Risk Analysis, John Wiley & Sons, vol. 39(5), pages 1022-1043, May.
    2. Michael Greenberg & Anthony Cox & Vicki Bier & Jim Lambert & Karen Lowrie & Warner North & Michael Siegrist & Felicia Wu, 2020. "Risk Analysis: Celebrating the Accomplishments and Embracing Ongoing Challenges," Risk Analysis, John Wiley & Sons, vol. 40(S1), pages 2113-2127, November.
    3. Kathrin Kirchen & William Harbert & Jay Apt & M. Granger Morgan, 2020. "A Solar‐Centric Approach to Improving Estimates of Exposure Processes for Coronal Mass Ejections," Risk Analysis, John Wiley & Sons, vol. 40(5), pages 1020-1039, May.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:38:y:2018:i:8:p:1534-1540. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.