IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v36y2016i10p1948-1958.html
   My bibliography  Save this article

A Generalized QMRA Beta‐Poisson Dose‐Response Model

Author

Listed:
  • Gang Xie
  • Anne Roiko
  • Helen Stratton
  • Charles Lemckert
  • Peter K. Dunn
  • Kerrie Mengersen

Abstract

Quantitative microbial risk assessment (QMRA) is widely accepted for characterizing the microbial risks associated with food, water, and wastewater. Single‐hit dose‐response models are the most commonly used dose‐response models in QMRA. Denoting PI(d) as the probability of infection at a given mean dose d, a three‐parameter generalized QMRA beta‐Poisson dose‐response model, PI(d|α,β,r*), is proposed in which the minimum number of organisms required for causing infection, Kmin, is not fixed, but a random variable following a geometric distribution with parameter 0

Suggested Citation

  • Gang Xie & Anne Roiko & Helen Stratton & Charles Lemckert & Peter K. Dunn & Kerrie Mengersen, 2016. "A Generalized QMRA Beta‐Poisson Dose‐Response Model," Risk Analysis, John Wiley & Sons, vol. 36(10), pages 1948-1958, October.
  • Handle: RePEc:wly:riskan:v:36:y:2016:i:10:p:1948-1958
    DOI: 10.1111/risa.12561
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/risa.12561
    Download Restriction: no

    File URL: https://libkey.io/10.1111/risa.12561?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Peter Teunis & Katsuhisa Takumi & Kunihiro Shinagawa, 2004. "Dose Response for Infection by Escherichia coli O157:H7 from Outbreak Data," Risk Analysis, John Wiley & Sons, vol. 24(2), pages 401-407, April.
    2. repec:dau:papers:123456789/5724 is not listed on IDEAS
    3. P. F. M. Teunis & A. H. Havelaar, 2000. "The Beta Poisson Dose‐Response Model Is Not a Single‐Hit Model," Risk Analysis, John Wiley & Sons, vol. 20(4), pages 513-520, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lailai Chen & Helena Geys & Shaun Cawthraw & Arie Havelaar & Peter Teunis, 2006. "Dose Response for Infectivity of Several Strains of Campylobacter jejuni in Chickens," Risk Analysis, John Wiley & Sons, vol. 26(6), pages 1613-1621, December.
    2. Gang Xie & Anne Roiko & Helen Stratton & Charles Lemckert & Peter K. Dunn & Kerrie Mengersen, 2017. "Guidelines for Use of the Approximate Beta‐Poisson Dose–Response Model," Risk Analysis, John Wiley & Sons, vol. 37(7), pages 1388-1402, July.
    3. Helen E. Clough & Daymian Clancy & Nigel P. French, 2006. "Vero‐Cytotoxigenic Escherichia coli O157 in Pasteurized Milk Containers at the Point of Retail: A Qualitative Approach to Exposure Assessment," Risk Analysis, John Wiley & Sons, vol. 26(5), pages 1291-1309, October.
    4. Wopke van der Werf & Lia Hemerik & Just M Vlak & Mark P Zwart, 2011. "Heterogeneous Host Susceptibility Enhances Prevalence of Mixed-Genotype Micro-Parasite Infections," PLOS Computational Biology, Public Library of Science, vol. 7(6), pages 1-15, June.
    5. Arie H. Havelaar & Marie‐Josee J. Mangen & Aline A. De Koeijer & Marc‐Jeroen Bogaardt & Eric G. Evers & Wilma F. Jacobs‐Reitsma & Wilfrid Van Pelt & Jaap A. Wagenaar & G. Ardine De Wit & Henk Van Der , 2007. "Effectiveness and Efficiency of Controlling Campylobacter on Broiler Chicken Meat," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 831-844, August.
    6. Eric G. Evers & Hetty Blaak & Raditijo A. Hamidjaja & Rob de Jonge & Franciska M. Schets, 2016. "A QMRA for the Transmission of ESBL‐Producing Escherichia coli and Campylobacter from Poultry Farms to Humans Through Flies," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 215-227, February.
    7. Amie Adkin & Neil Donaldson & Louise Kelly, 2013. "A Quantitative Assessment of the Prion Risk Associated with Wastewater from Carcass‐Handling Facilities," Risk Analysis, John Wiley & Sons, vol. 33(7), pages 1212-1227, July.
    8. Jennifer Ekman & Adam Goldwater & Mark Bradbury & Jim Matthews & Gordon Rogers, 2020. "Persistence of Human Pathogens in Manure-Amended Australian Soils Used for Production of Leafy Vegetables," Agriculture, MDPI, vol. 11(1), pages 1-18, December.
    9. Zhang, Xiaoge & Mahadevan, Sankaran, 2021. "Bayesian network modeling of accident investigation reports for aviation safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    10. Peter F. M. Teunis & Cynthia L. Chappell & Pablo C. Okhuysen, 2002. "Cryptosporidium Dose Response Studies: Variation Between Isolates," Risk Analysis, John Wiley & Sons, vol. 22(1), pages 175-185, February.
    11. Ascioti, Fortunato A. & Mangano, Maria Cristina & Marcianò, Claudio & Sarà , Gianluca, 2022. "The sanitation service of seagrasses – Dependencies and implications for the estimation of avoided costs," Ecosystem Services, Elsevier, vol. 54(C).
    12. Arnout R. H. Fischer & Aarieke E. I. De Jong & Esther D. Van Asselt & Rob De Jonge & Lynn J. Frewer & Maarten J. Nauta, 2007. "Food Safety in the Domestic Environment: An Interdisciplinary Investigation of Microbial Hazards During Food Preparation," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 1065-1082, August.
    13. Mary J. Bartholomew & David J. Vose & Linda R. Tollefson & Curtis C. Travis, 2005. "A Linear Model for Managing the Risk of Antimicrobial Resistance Originating in Food Animals," Risk Analysis, John Wiley & Sons, vol. 25(1), pages 99-108, February.
    14. Sido D. Mylius & Maarten J. Nauta & Arie H. Havelaar, 2007. "Cross‐Contamination During Food Preparation: A Mechanistic Model Applied to Chicken‐Borne Campylobacter," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 803-813, August.
    15. Jack Schijven & Martijn Bouwknegt & Ana Maria de Roda Husman & Saskia Rutjes & Bertrand Sudre & Jonathan E. Suk & Jan C. Semenza, 2013. "A Decision Support Tool to Compare Waterborne and Foodborne Infection and/or Illness Risks Associated with Climate Change," Risk Analysis, John Wiley & Sons, vol. 33(12), pages 2154-2167, December.
    16. Peyton M. Ferrier & Jean C. Buzby, 2013. "The Economic Efficiency of Sampling Size: The Case of Beef Trim," Risk Analysis, John Wiley & Sons, vol. 33(3), pages 368-384, March.
    17. Miao Guo & Abhinav Mishra & Robert L. Buchanan & Jitender P. Dubey & Dolores E. Hill & H. Ray Gamble & Jeffrey L. Jones & Xianzhi Du & Abani K. Pradhan, 2016. "Development of Dose‐Response Models to Predict the Relationship for Human Toxoplasma gondii Infection Associated with Meat Consumption," Risk Analysis, John Wiley & Sons, vol. 36(5), pages 926-938, May.
    18. Philip J. Schmidt & Katarina D. M. Pintar & Aamir M. Fazil & Edward Topp, 2013. "Harnessing the Theoretical Foundations of the Exponential and Beta‐Poisson Dose‐Response Models to Quantify Parameter Uncertainty Using Markov Chain Monte Carlo," Risk Analysis, John Wiley & Sons, vol. 33(9), pages 1677-1693, September.
    19. Sushil B. Tamrakar & Charles N. Haas, 2011. "Dose‐Response Model of Rocky Mountain Spotted Fever (RMSF) for Human," Risk Analysis, John Wiley & Sons, vol. 31(10), pages 1610-1621, October.
    20. Jack Schijven & Gerard B. J. Rijs & Ana Maria De Roda Husman, 2005. "Quantitative Risk Assessment of FMD Virus Transmission via Water," Risk Analysis, John Wiley & Sons, vol. 25(1), pages 13-21, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:36:y:2016:i:10:p:1948-1958. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.