IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v33y2013i8p1500-1509.html
   My bibliography  Save this article

On Determining the BMD from Multiple Outcomes in Developmental Toxicity Studies when One Outcome is Intentionally Missing

Author

Listed:
  • Julie S. Najita
  • Paul J. Catalano

Abstract

Public health concerns over the occurrence of developmental abnormalities that can occur as a result of prenatal exposure to drugs, chemicals, and other environmental factors has led to a number of developmental toxicity studies and the use of the benchmark dose (BMD) for risk assessment. To characterize risk from multiple sources, more recent analytic methods involve a joint modeling approach, accounting for multiple dichotomous and continuous outcomes. For some continuous outcomes, evaluating all subjects may not be feasible, and only a subset may be evaluated due to limited resources. The subset can be selected according to a prespecified probability model and the unobserved data can be viewed as intentionally missing in the sense that subset selection results in missingness that is experimentally planned. We describe a subset selection model that allows for sampling pups with malformations and healthy pups at different rates, and includes the well‐known simple random sample (SRS) as a special case. We were interested in understanding how sampling rates that are selected beforehand influence the precision of the BMD. Using simulations we show how improvements over the SRS can be obtained by oversampling malformations, and how some sampling rates can yield precision that is substantially worse than the SRS. We also illustrate the potential for cost saving with oversampling. Simulations are based on a joint mixed effects model, and to account for subset selection, use of case weights to obtain valid dose‐response estimates.

Suggested Citation

  • Julie S. Najita & Paul J. Catalano, 2013. "On Determining the BMD from Multiple Outcomes in Developmental Toxicity Studies when One Outcome is Intentionally Missing," Risk Analysis, John Wiley & Sons, vol. 33(8), pages 1500-1509, August.
  • Handle: RePEc:wly:riskan:v:33:y:2013:i:8:p:1500-1509
    DOI: 10.1111/j.1539-6924.2012.01939.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2012.01939.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2012.01939.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Julie S. Najita & Yi Li & Paul J. Catalano, 2009. "A novel application of a bivariate regression model for binary and continuous outcomes to studies of fetal toxicity," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 58(4), pages 555-573, September.
    2. David B. Dunson & Zhen Chen & Jean Harry, 2003. "A Bayesian Approach for Joint Modeling of Cluster Size and Subunit-Specific Outcomes," Biometrics, The International Biometric Society, vol. 59(3), pages 521-530, September.
    3. Carole A. Kimmel & David W. Gaylor, 1988. "Issues in Qualitative and Quantitative Risk Analysis for Developmental Toxicology," Risk Analysis, John Wiley & Sons, vol. 8(1), pages 15-20, March.
    4. Ralph L. Kodell & Richard B. Howe & James J. Chen & David W. Gaylor, 1991. "Mathematical Modeling of Reproductive and Developmental Toxic Effects for Quantitative Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 11(4), pages 583-590, December.
    5. Mary Dupuis Sammel & Louise M. Ryan & Julie M. Legler, 1997. "Latent Variable Models for Mixed Discrete and Continuous Outcomes," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 59(3), pages 667-678.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. John F. Fox & Karen A. Hogan & Allen Davis, 2017. "Dose‐Response Modeling with Summary Data from Developmental Toxicity Studies," Risk Analysis, John Wiley & Sons, vol. 37(5), pages 905-917, May.
    2. Signe M. Jensen & Felix M. Kluxen & Christian Ritz, 2019. "A Review of Recent Advances in Benchmark Dose Methodology," Risk Analysis, John Wiley & Sons, vol. 39(10), pages 2295-2315, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hao Bai & Yuan Zhong & Xin Gao & Wei Xu, 2020. "Multivariate Mixed Response Model with Pairwise Composite-Likelihood Method," Stats, MDPI, vol. 3(3), pages 1-18, July.
    2. Yang Lu, 2019. "Flexible (panel) regression models for bivariate count–continuous data with an insurance application," Journal of the Royal Statistical Society Series A, Royal Statistical Society, vol. 182(4), pages 1503-1521, October.
    3. Christel Faes & Marc Aerts & Helena Geys & Geert Molenberghs, 2007. "Model Averaging Using Fractional Polynomials to Estimate a Safe Level of Exposure," Risk Analysis, John Wiley & Sons, vol. 27(1), pages 111-123, February.
    4. Daniel O. Scharfstein & Paige L. Williams, 1994. "Design of Developmental Toxicity Studies for Assessing Joint Effects of Dose and Duration," Risk Analysis, John Wiley & Sons, vol. 14(6), pages 1057-1071, December.
    5. Emilio Augusto Coelho-Barros & Jorge Alberto Achcar & Josmar Mazucheli, 2010. "Longitudinal Poisson modeling: an application for CD4 counting in HIV-infected patients," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(5), pages 865-880.
    6. J. Michael Davis & Annie M. Jarabek & David T. Mage & Judith A. Graham, 1998. "The EPA Health Risk Assessment of Methylcyclopentadienyl Manganese Tricarbonyl (MMT)," Risk Analysis, John Wiley & Sons, vol. 18(1), pages 57-70, February.
    7. Chen Yuqi & Wang Yuedong & Guo Wensheng & Kotanko Peter & Usvyat Len, 2016. "Joint Model for Mortality and Hospitalization," The International Journal of Biostatistics, De Gruyter, vol. 12(2), pages 1-11, November.
    8. Lanjia Lin & Dipankar Bandyopadhyay & Stuart R. Lipsitz & Debajyoti Sinha, 2010. "Association Models for Clustered Data with Binary and Continuous Responses," Biometrics, The International Biometric Society, vol. 66(1), pages 287-293, March.
    9. Jaakko Nevalainen & Somnath Datta & Hannu Oja, 2014. "Inference on the marginal distribution of clustered data with informative cluster size," Statistical Papers, Springer, vol. 55(1), pages 71-92, February.
    10. Zhang, Q. & Ip, E.H., 2014. "Variable assessment in latent class models," Computational Statistics & Data Analysis, Elsevier, vol. 77(C), pages 146-156.
    11. D. Krewski & Y. Zhu, 1994. "Applications of Multinomial Dose‐Response Models in Developmental Toxicity Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 14(4), pages 613-627, August.
    12. Zhenzhen Zhang & Thomas M. Braun & Karen E. Peterson & Howard Hu & Martha M. Téllez-Rojo & Brisa N. Sánchez, 2018. "Extending Tests of Random Effects to Assess for Measurement Invariance in Factor Models," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 10(3), pages 634-650, December.
    13. Luo, Chongliang & Liang, Jian & Li, Gen & Wang, Fei & Zhang, Changshui & Dey, Dipak K. & Chen, Kun, 2018. "Leveraging mixed and incomplete outcomes via reduced-rank modeling," Journal of Multivariate Analysis, Elsevier, vol. 167(C), pages 378-394.
    14. Leila Amiri & Mojtaba Khazaei & Mojtaba Ganjali, 2018. "A mixture latent variable model for modeling mixed data in heterogeneous populations and its applications," AStA Advances in Statistical Analysis, Springer;German Statistical Society, vol. 102(1), pages 95-115, January.
    15. Michael R. Elliott & Marshall M. Joffe & Zhen Chen, 2006. "A Potential Outcomes Approach to Developmental Toxicity Analyses," Biometrics, The International Biometric Society, vol. 62(2), pages 352-360, June.
    16. Zhang, Xiao & Boscardin, W. John & Belin, Thomas R. & Wan, Xiaohai & He, Yulei & Zhang, Kui, 2015. "A Bayesian method for analyzing combinations of continuous, ordinal, and nominal categorical data with missing values," Journal of Multivariate Analysis, Elsevier, vol. 135(C), pages 43-58.
    17. Samson B. Adebayo & Ludwig Fahrmeir & Christian Seiler & Christian Heumann, 2011. "Geoadditive Latent Variable Modeling of Count Data on Multiple Sexual Partnering in Nigeria," Biometrics, The International Biometric Society, vol. 67(2), pages 620-628, June.
    18. Hoshino, Takahiro, 2008. "A Bayesian propensity score adjustment for latent variable modeling and MCMC algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 52(3), pages 1413-1429, January.
    19. Nussbaum, Frank & Giesen, Joachim, 2020. "Pairwise sparse + low-rank models for variables of mixed type," Journal of Multivariate Analysis, Elsevier, vol. 178(C).
    20. Jane Osburn, 2011. "A Latent Variable Approach to Examining the Effects of HR Policies on the Inter- and Intra-Establishment Wage and Employment Structure: A Study of Two Precision Manufacturing Industries," Working Papers 451, U.S. Bureau of Labor Statistics.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:33:y:2013:i:8:p:1500-1509. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.