IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v31y2011i2p255-265.html
   My bibliography  Save this article

The Impact of Consumer Phase Models in Microbial Risk Analysis

Author

Listed:
  • Maarten Nauta
  • Bjarke Christensen

Abstract

In quantitative microbiological risk assessment (QMRA), the consumer phase model (CPM) describes the part of the food chain between purchase of the food product at retail and exposure. Construction of a CPM is complicated by the large variation in consumer food handling practices and a limited availability of data. Therefore, several subjective (simplifying) assumptions have to be made when a CPM is constructed, but with a single CPM their impact on the QMRA results is unclear. We therefore compared the performance of eight published CPMs for Campylobacter in broiler meat in an example of a QMRA, where all the CPMs were analyzed using one single input distribution of concentrations at retail, and the same dose‐response relationship. It was found that, between CPMs, there may be a considerable difference in the estimated probability of illness per serving. However, the estimated relative risk reductions are less different for scenarios modeling the implementation of control measures. For control measures affecting the Campylobacter prevalence, the relative risk is proportional irrespective of the CPM used. However, for control measures affecting the concentration the CPMs show some difference in the estimated relative risk. This difference is largest for scenarios where the aim is to remove the highly contaminated portion from human exposure. Given these results, we conclude that for many purposes it is not necessary to develop a new detailed CPM for each new QMRA. However, more observational data on consumer food handling practices and their impact on microbial transfer and survival are needed to generalize this conclusion.

Suggested Citation

  • Maarten Nauta & Bjarke Christensen, 2011. "The Impact of Consumer Phase Models in Microbial Risk Analysis," Risk Analysis, John Wiley & Sons, vol. 31(2), pages 255-265, February.
  • Handle: RePEc:wly:riskan:v:31:y:2011:i:2:p:255-265
    DOI: 10.1111/j.1539-6924.2010.01481.x
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/j.1539-6924.2010.01481.x
    Download Restriction: no

    File URL: https://libkey.io/10.1111/j.1539-6924.2010.01481.x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Maarten J. Nauta & Arnout R. H. Fischer & Esther D. Van Asselt & Aarieke E. I. De Jong & Lynn J. Frewer & Rob De Jonge, 2008. "Food Safety in the Domestic Environment: The Effect of Consumer Risk Information on Human Disease Risks," Risk Analysis, John Wiley & Sons, vol. 28(1), pages 179-192, February.
    2. Maarten J. Nauta & Wilma F. Jacobs‐Reitsma & Arie H. Havelaar, 2007. "A Risk Assessment Model for Campylobacter in Broiler Meat," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 845-861, August.
    3. Arnout R. H. Fischer & Aarieke E. I. De Jong & Rob De Jonge & Lynn J. Frewer & Maarten J. Nauta, 2005. "Improving Food Safety in the Domestic Environment: The Need for a Transdisciplinary Approach," Risk Analysis, John Wiley & Sons, vol. 25(3), pages 503-517, June.
    4. Peter F. M. Teunis & Nico J. D. Nagelkerke & Charles N. Haas, 1999. "Dose Response Models For Infectious Gastroenteritis," Risk Analysis, John Wiley & Sons, vol. 19(6), pages 1251-1260, December.
    5. Arie H. Havelaar & Marie‐Josee J. Mangen & Aline A. De Koeijer & Marc‐Jeroen Bogaardt & Eric G. Evers & Wilma F. Jacobs‐Reitsma & Wilfrid Van Pelt & Jaap A. Wagenaar & G. Ardine De Wit & Henk Van Der , 2007. "Effectiveness and Efficiency of Controlling Campylobacter on Broiler Chicken Meat," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 831-844, August.
    6. Esther Van Asselt & Arnout Fischer & Aarieke E. I. De Jong & Maarten J. Nauta & Rob De Jonge, 2009. "Cooking Practices in the Kitchen—Observed Versus Predicted Behavior," Risk Analysis, John Wiley & Sons, vol. 29(4), pages 533-540, April.
    7. Sido D. Mylius & Maarten J. Nauta & Arie H. Havelaar, 2007. "Cross‐Contamination During Food Preparation: A Mechanistic Model Applied to Chicken‐Borne Campylobacter," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 803-813, August.
    8. Bjarke B. Christensen & Hanne Rosenquist & Helle M. Sommer & Niels L. Nielsen & Sisse Fagt & Niels L. Andersen & Birgit Nørrung, 2005. "A Model of Hygiene Practices and Consumption Patterns in the Consumer Phase," Risk Analysis, John Wiley & Sons, vol. 25(1), pages 49-60, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. A. N. Swart & F. van Leusden & M. J. Nauta, 2016. "A QMRA Model for Salmonella in Pork Products During Preparation and Consumption," Risk Analysis, John Wiley & Sons, vol. 36(3), pages 516-530, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maarten J. Nauta & Arnout R. H. Fischer & Esther D. Van Asselt & Aarieke E. I. De Jong & Lynn J. Frewer & Rob De Jonge, 2008. "Food Safety in the Domestic Environment: The Effect of Consumer Risk Information on Human Disease Risks," Risk Analysis, John Wiley & Sons, vol. 28(1), pages 179-192, February.
    2. Sido D. Mylius & Maarten J. Nauta & Arie H. Havelaar, 2007. "Cross‐Contamination During Food Preparation: A Mechanistic Model Applied to Chicken‐Borne Campylobacter," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 803-813, August.
    3. Marie‐Josée J. Mangen & Arie H. Havelaar & Krijn P. Poppe & G. Ardine De Wit & the CARMA Project Team, 2007. "Cost‐Utility Analysis to Control Campylobacter on Chicken Meat—Dealing with Data Limitations," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 815-830, August.
    4. Wendelke E. A. Katsma & Aline A. De Koeijer & Wilma F. Jacobs‐Reitsma & Marie‐Josée J. Mangen & Jaap A. Wagenaar, 2007. "Assessing Interventions to Reduce the Risk of Campylobacter Prevalence in Broilers," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 863-876, August.
    5. Carol Byrd-Bredbenner & Jacqueline Berning & Jennifer Martin-Biggers & Virginia Quick, 2013. "Food Safety in Home Kitchens: A Synthesis of the Literature," IJERPH, MDPI, vol. 10(9), pages 1-26, September.
    6. A. H. Havelaar & A. N. Swart, 2014. "Impact of Acquired Immunity and Dose‐Dependent Probability of Illness on Quantitative Microbial Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 34(10), pages 1807-1819, October.
    7. Martijn Bouwknegt & Anne B. Knol & Jeroen P. van der Sluijs & Eric G. Evers, 2014. "Uncertainty of Population Risk Estimates for Pathogens Based on QMRA or Epidemiology: A Case Study of Campylobacter in the Netherlands," Risk Analysis, John Wiley & Sons, vol. 34(5), pages 847-864, May.
    8. Régis Pouillot & Véronique Goulet & Marie Laure Delignette‐Muller & Aurélie Mahé & Marie Cornu, 2009. "Quantitative Risk Assessment of Listeria monocytogenes in French Cold‐Smoked Salmon: II. Risk Characterization," Risk Analysis, John Wiley & Sons, vol. 29(6), pages 806-819, June.
    9. Kaatje Els Bollaerts & Winy Messens & Laurent Delhalle & Marc Aerts & Yves Van der Stede & Jeroen Dewulf & Sophie Quoilin & Dominiek Maes & Koen Mintiens & Koen Grijspeerdt, 2009. "Development of a Quantitative Microbial Risk Assessment for Human Salmonellosis Through Household Consumption of Fresh Minced Pork Meat in Belgium," Risk Analysis, John Wiley & Sons, vol. 29(6), pages 820-840, June.
    10. A. N. Swart & F. van Leusden & M. J. Nauta, 2016. "A QMRA Model for Salmonella in Pork Products During Preparation and Consumption," Risk Analysis, John Wiley & Sons, vol. 36(3), pages 516-530, March.
    11. Arnout R. H. Fischer & Lynn J. Frewer & Maarten J. Nauta, 2006. "Toward Improving Food Safety in the Domestic Environment: A Multi‐Item Rasch Scale for the Measurement of the Safety Efficacy of Domestic Food‐Handling Practices," Risk Analysis, John Wiley & Sons, vol. 26(5), pages 1323-1338, October.
    12. Maarten J. Nauta & Wilma F. Jacobs‐Reitsma & Arie H. Havelaar, 2007. "A Risk Assessment Model for Campylobacter in Broiler Meat," Risk Analysis, John Wiley & Sons, vol. 27(4), pages 845-861, August.
    13. Dorota Kurowicka & Maarten Nauta & Katarzyna Jozwiak & Roger Cooke, 2010. "Updating Parameters of the Chicken Processing Line Model," Risk Analysis, John Wiley & Sons, vol. 30(6), pages 934-944, June.
    14. Régis Pouillot & Benoit Garin & Noro Ravaonindrina & Kane Diop & Mahery Ratsitorahina & Domoina Ramanantsoa & Jocelyne Rocourt, 2012. "A Risk Assessment of Campylobacteriosis and Salmonellosis Linked to Chicken Meals Prepared in Households in Dakar, Senegal," Risk Analysis, John Wiley & Sons, vol. 32(10), pages 1798-1819, October.
    15. Michael S. Williams & Eric D. Ebel & David Vose, 2011. "Framework for Microbial Food‐Safety Risk Assessments Amenable to Bayesian Modeling," Risk Analysis, John Wiley & Sons, vol. 31(4), pages 548-565, April.
    16. Eric G. Evers & Petra A. Berk & Mijke L. Horneman & Frans M. van Leusden & Rob de Jonge, 2014. "A Quantitative Microbiological Risk Assessment for Campylobacter in Petting Zoos," Risk Analysis, John Wiley & Sons, vol. 34(9), pages 1618-1638, September.
    17. K. Hoelzer & Y. Chen & S. Dennis & P. Evans & R. Pouillot & B. J. Silk & I. Walls, 2013. "New Data, Strategies, and Insights for Listeria monocytogenes Dose‐Response Models: Summary of an Interagency Workshop, 2011," Risk Analysis, John Wiley & Sons, vol. 33(9), pages 1568-1581, September.
    18. Juliana Martins Ruzante & Valerie J. Davidson & Julie Caswell & Aamir Fazil & John A. L. Cranfield & Spencer J. Henson & Sven M. Anders & Claudia Schmidt & Jeffrey M. Farber, 2010. "A Multifactorial Risk Prioritization Framework for Foodborne Pathogens," Risk Analysis, John Wiley & Sons, vol. 30(5), pages 724-742, May.
    19. Yuke Wang & Christine L. Moe & Peter F. M. Teunis, 2018. "Children Are Exposed to Fecal Contamination via Multiple Interconnected Pathways: A Network Model for Exposure Assessment," Risk Analysis, John Wiley & Sons, vol. 38(11), pages 2478-2496, November.
    20. Eric G. Evers & Hetty Blaak & Raditijo A. Hamidjaja & Rob de Jonge & Franciska M. Schets, 2016. "A QMRA for the Transmission of ESBL‐Producing Escherichia coli and Campylobacter from Poultry Farms to Humans Through Flies," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 215-227, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:31:y:2011:i:2:p:255-265. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.