IDEAS home Printed from https://ideas.repec.org/a/wly/riskan/v22y2002i6p1195-1205.html
   My bibliography  Save this article

Optimal Designs for Estimating the Effective Dose in Developmental Toxicity Experiments

Author

Listed:
  • Daniel Krewski
  • Robert Smythe
  • Karen Y. Fung

Abstract

Recent advances in risk assessment have led to the development of joint dose‐response models to describe prenatal death and fetal malformation rates in developmental toxicity experiments. These models can be used to estimate the effective dose corresponding to a 5% excess risk for both these toxicological endpoints, as well as for overall toxicity. In this article, we develop optimal experimental designs for the estimation of the effective dose for developmental toxicity using joint Weibull dose‐response models for prenatal death and fetal malformation. Based on an extended series of developmental studies, near‐optimal designs for prenatal death, malformation, and overall toxicity were found to involve three dose groups: an unexposed control group, a high dose equal to the maximum tolerated dose, and a low dose above or comparable to the effective dose. The effect on the optimal designs of changing the number of implants and the degree of intra‐litter correlation is also investigated. Although the optimal design has only three dose groups in most cases, practical considerations involving model lack of fit and estimation of the shape of the dose‐response curve suggest that, in practice, suboptimal designs with more than three doses will often be preferred.

Suggested Citation

  • Daniel Krewski & Robert Smythe & Karen Y. Fung, 2002. "Optimal Designs for Estimating the Effective Dose in Developmental Toxicity Experiments," Risk Analysis, John Wiley & Sons, vol. 22(6), pages 1195-1205, December.
  • Handle: RePEc:wly:riskan:v:22:y:2002:i:6:p:1195-1205
    DOI: 10.1111/1539-6924.00283
    as

    Download full text from publisher

    File URL: https://doi.org/10.1111/1539-6924.00283
    Download Restriction: no

    File URL: https://libkey.io/10.1111/1539-6924.00283?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Robert J. Kavlock & Judith E. Schmid & R. Woodrow Setzer, 1996. "A Simulation Study of the Influence of Study Design on the Estimation of Benchmark Doses for Developmental Toxicity," Risk Analysis, John Wiley & Sons, vol. 16(3), pages 399-410, June.
    2. Carole A. Kimmel & David W. Gaylor, 1988. "Issues in Qualitative and Quantitative Risk Analysis for Developmental Toxicology," Risk Analysis, John Wiley & Sons, vol. 8(1), pages 15-20, March.
    3. D. Krewski & Y. Zhu, 1995. "A Simple Data Transformation for Estimating Benchmark Doses in Developmental Toxicity Experiments," Risk Analysis, John Wiley & Sons, vol. 15(1), pages 29-39, February.
    4. Louise Ryan, 1992. "The Use of Generalized Estimating Equations for Risk Assessment in Developmental Toxicity," Risk Analysis, John Wiley & Sons, vol. 12(3), pages 439-447, September.
    5. D. Krewski & Y. Zhu, 1994. "Applications of Multinomial Dose‐Response Models in Developmental Toxicity Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 14(4), pages 613-627, August.
    6. James Chen, 1993. "A Malformation Incidence Dose‐Response Model Incorporating Fetal Weight and/or Litter Size as Covariates," Risk Analysis, John Wiley & Sons, vol. 13(5), pages 559-564, October.
    7. Y. Zhu & D. Krewski & W. H. Ross, 1994. "Dose‐Response Models for Correlated Multinomial Data from Developmental Toxicity Studies," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 43(4), pages 583-598, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Karen Y. Fung & Leonora Marro & Daniel Krewski, 1998. "A Comparison of Methods for Estimating the Benchmark Dose Based on Overdispersed Data from Developmental Toxicity Studies," Risk Analysis, John Wiley & Sons, vol. 18(3), pages 329-342, June.
    2. Daniel O. Scharfstein & Paige L. Williams, 1994. "Design of Developmental Toxicity Studies for Assessing Joint Effects of Dose and Duration," Risk Analysis, John Wiley & Sons, vol. 14(6), pages 1057-1071, December.
    3. Dette, Holger & Pepelyshev, Andrey & Wong, Weng Kee, 2008. "Optimal designs for dose finding experiments in toxicity studies," Technical Reports 2008,09, Technische Universität Dortmund, Sonderforschungsbereich 475: Komplexitätsreduktion in multivariaten Datenstrukturen.
    4. Fereshteh Kalantari & Joakim Ringblom & Salomon Sand & Mattias Öberg, 2017. "Influence of Distribution of Animals between Dose Groups on Estimated Benchmark Dose and Animal Distress for Quantal Responses," Risk Analysis, John Wiley & Sons, vol. 37(9), pages 1716-1728, September.
    5. Terra L. Slaton & Walter W. Piegorsch & Stephen D. Durham, 2000. "Estimation and Testing with Overdispersed Proportions Using the Beta-Logistic Regression Model of Heckman and Willis," Biometrics, The International Biometric Society, vol. 56(1), pages 125-133, March.
    6. Christel Faes & Marc Aerts & Helena Geys & Geert Molenberghs, 2007. "Model Averaging Using Fractional Polynomials to Estimate a Safe Level of Exposure," Risk Analysis, John Wiley & Sons, vol. 27(1), pages 111-123, February.
    7. J. Michael Davis & Annie M. Jarabek & David T. Mage & Judith A. Graham, 1998. "The EPA Health Risk Assessment of Methylcyclopentadienyl Manganese Tricarbonyl (MMT)," Risk Analysis, John Wiley & Sons, vol. 18(1), pages 57-70, February.
    8. D. Krewski & Y. Zhu, 1994. "Applications of Multinomial Dose‐Response Models in Developmental Toxicity Risk Assessment," Risk Analysis, John Wiley & Sons, vol. 14(4), pages 613-627, August.
    9. Joakim Ringblom & Fereshteh Kalantari & Gunnar Johanson & Mattias Öberg, 2018. "Influence of Distribution of Animals between Dose Groups on Estimated Benchmark Dose and Animal Welfare for Continuous Effects," Risk Analysis, John Wiley & Sons, vol. 38(6), pages 1143-1153, June.
    10. Molenberghs, Geert & Declerck, Lieven & Aerts, Marc, 1998. "Misspecifying the likelihood for clustered binary data," Computational Statistics & Data Analysis, Elsevier, vol. 26(3), pages 327-349, January.
    11. John F. Fox & Karen A. Hogan & Allen Davis, 2017. "Dose‐Response Modeling with Summary Data from Developmental Toxicity Studies," Risk Analysis, John Wiley & Sons, vol. 37(5), pages 905-917, May.
    12. Jeffrey C. Swartout & Paul S. Price & Michael L. Dourson & Heather L. Carlson‐Lynch & Russell E. Keenan, 1998. "A Probabilistic Framework for the Reference Dose (Probabilistic RfD)," Risk Analysis, John Wiley & Sons, vol. 18(3), pages 271-282, June.
    13. David W. Gaylor & William Slikker, 1994. "Modeling for Risk Assessment of Neurotoxic Effects," Risk Analysis, John Wiley & Sons, vol. 14(3), pages 333-338, June.
    14. Brian G. Leroux & Wendy M. Leisenring & Suresh H. Moolgavkar & Elaine M. Faustman, 1996. "A Biologically‐Based Dose—Response Model for Developmental Toxicology," Risk Analysis, John Wiley & Sons, vol. 16(4), pages 449-458, August.
    15. Raimo I. Niemelä & Jorma Rantanen & Mirja K. Kiilunen, 1998. "Target Levels—Tools for Prevention," Risk Analysis, John Wiley & Sons, vol. 18(6), pages 679-688, December.
    16. Andrew S. Allen & Huiman X. Barnhart, 2002. "Joint Models for Toxicology Studies with Dose‐Dependent Number of Implantations," Risk Analysis, John Wiley & Sons, vol. 22(6), pages 1165-1173, December.
    17. Silvio S. Zocchi & Anthony C. Atkinson, 1999. "Optimum Experimental Designs for Multinomial Logistic Models," Biometrics, The International Biometric Society, vol. 55(2), pages 437-444, June.
    18. R. Webster West & Ralph L. Kodell, 1999. "A Comparison of Methods of Benchmark‐Dose Estimation for Continuous Response Data," Risk Analysis, John Wiley & Sons, vol. 19(3), pages 453-459, June.
    19. D. Krewski & Y. Zhu, 1995. "A Simple Data Transformation for Estimating Benchmark Doses in Developmental Toxicity Experiments," Risk Analysis, John Wiley & Sons, vol. 15(1), pages 29-39, February.
    20. Paul Catalano & Louise Ryan & Daniel Scharfstein, 1994. "Modeling Fetal Death and Malformation in Developmental Toxicity Studies," Risk Analysis, John Wiley & Sons, vol. 14(4), pages 629-637, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:riskan:v:22:y:2002:i:6:p:1195-1205. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1111/(ISSN)1539-6924 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.