IDEAS home Printed from https://ideas.repec.org/a/wly/perpro/v21y2010i2p208-214.html
   My bibliography  Save this article

Potential remobilization of belowground permafrost carbon under future global warming

Author

Listed:
  • P. Kuhry
  • E. Dorrepaal
  • G. Hugelius
  • E. A. G. Schuur
  • C. Tarnocai

Abstract

Research on permafrost carbon has dramatically increased in the past few years. A new estimate of 1672 Pg C of belowground organic carbon in the northern circumpolar permafrost region more than doubles the previous value and highlights the potential role of permafrost carbon in the Earth System. Uncertainties in this new estimate remain due to relatively few available pedon data for certain geographic sectors and the deeper cryoturbated soil horizons, and the large polygon size in the soil maps used for upscaling. The large permafrost carbon pool is not equally distributed across the landscape: peat deposits, cryoturbated soils and the loess‐like deposits of the yedoma complex contain disproportionately large amounts of soil organic matter, often exhibiting a low degree of decomposition. Recent findings in Alaska and northern Sweden provide strong evidence that the deeper soil carbon in permafrost terrain is starting to be released, supporting previous reports from Siberia. The permafrost carbon pool is not yet fully integrated in climate and ecosystem models and an important objective should be to define typical pedons appropriate for model setups. The thawing permafrost carbon feedback needs to be included in model projections of future climate change. Copyright © 2010 John Wiley & Sons, Ltd.

Suggested Citation

  • P. Kuhry & E. Dorrepaal & G. Hugelius & E. A. G. Schuur & C. Tarnocai, 2010. "Potential remobilization of belowground permafrost carbon under future global warming," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 21(2), pages 208-214, April.
  • Handle: RePEc:wly:perpro:v:21:y:2010:i:2:p:208-214
    DOI: 10.1002/ppp.684
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ppp.684
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ppp.684?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jörg Schnecker & Birgit Wild & Florian Hofhansl & Ricardo J Eloy Alves & Jiří Bárta & Petr Čapek & Lucia Fuchslueger & Norman Gentsch & Antje Gittel & Georg Guggenberger & Angelika Hofer & Sandra Kien, 2014. "Effects of Soil Organic Matter Properties and Microbial Community Composition on Enzyme Activities in Cryoturbated Arctic Soils," PLOS ONE, Public Library of Science, vol. 9(4), pages 1-10, April.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:perpro:v:21:y:2010:i:2:p:208-214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1530 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.