IDEAS home Printed from https://ideas.repec.org/a/wly/perpro/v12y2001i3p299-313.html
   My bibliography  Save this article

Microgelivation versus macrogelivation: towards bridging the gap between laboratory and field frost weathering

Author

Listed:
  • Norikazu Matsuoka

Abstract

The application of laboratory criteria for frost weathering to field problems needs caution, because a number of discrepancies lie between the laboratory and field conditions. This paper reviews thresholds for microgelivation of soft, intact rocks and macrogelivation of hard, jointed rocks, aiming at proposing better criteria in accordance with field conditions. The temperature at which ice segregation induces microgelivation varies significantly with lithology, ranging from about −1 °C in high porosity rocks to below −4 °C in low porosity rocks. Microgelivation can occur in initially unsaturated rocks when slow (seasonal) freezing drives prolonged water migration from surrounding rock or an external moisture source, while the occurrence requires a high degree of saturation (>80%) or a nearby moisture source when a rock undergoes rapid (diurnal) freezing. Rocks with a high internal surface area and low tensile strength favour microgelivation. These criteria are invalid for macrogelivation that tends to take place just below 0 °C in water‐filled joints. In addition, because the depth reached by cracking varies with the type of freeze‐thaw action, the analysis of thermal regimes should be based on data at the depth of actual cracking. Future targets for macrogelivation studies include the formation of new cracks in hard, intact rocks, as indicated by in situ shattering of clasts or bedrock typically observed in optimal moisture environments. Copyright © 2001 John Wiley & Sons, Ltd. L'application de critères de laboratoire dans des problèmes de terrain exige des précautions car les conditions de part et d'autre sont différentes. Le présent article passe en revue les seuils intervenant dans la microgélivation de roches tendres, intactes et dans la macrogélivation de roches dures présentant des joints, de façon à proposer de meilleurs critères en accord avec les conditions de terrain. La température à laquelle la glace de ségrégation provoque la microgélivation, varie de manière significative avec la lithologie et est comprise entre −1 °C dans des roches très poreuses et −4 °C dans des roches faiblement poreuses. La microgélivation peut se produire dans des roches au départ non saturées quand un gel lent (saisonnier) induit une migration prolongée de l'eau depuis la roche environnante ou une source d'humidité extérieure; tandis que la microgélivation se produit aussi quand une roche qui subit un gel rapide (diurne), présente un haut degré de saturation (>80%) ou une source d'humidité voisine. Une surface interne élevée et une cohésion faible des roches favorisent la microgélivation. Ces critères ne sont pas valides pour la macrogélivation qui prend place juste en dessous de 0 °C dans des joints remplis d'eau. En outre, parce que la profondeur atteinte par la fissuration varie avec le type de gel et de dégel, l'analyse des régimes thermiques devrait être basée sur des données correspondant à la profondeur où se produit la fracturation. Les objectifs des études futures de macrogélivation comprennent la formation de nouvelles fissures dan des roches dures intactes comme cela est obvervé dans la fissuration in situ de débris ou du bedrock se produisant dans des environnements ayant une humidité optimale. Copyright © 2001 John Wiley & Sons, Ltd.

Suggested Citation

  • Norikazu Matsuoka, 2001. "Microgelivation versus macrogelivation: towards bridging the gap between laboratory and field frost weathering," Permafrost and Periglacial Processes, John Wiley & Sons, vol. 12(3), pages 299-313, September.
  • Handle: RePEc:wly:perpro:v:12:y:2001:i:3:p:299-313
    DOI: 10.1002/ppp.393
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ppp.393
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ppp.393?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:perpro:v:12:y:2001:i:3:p:299-313. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1099-1530 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.