IDEAS home Printed from https://ideas.repec.org/a/wly/navres/v63y2016i3p247-259.html
   My bibliography  Save this article

Validation of a strategy for harbor defense based on the use of a min‐max algorithm receding horizon control law

Author

Listed:
  • Joseph Foraker
  • Seungho Lee
  • Elijah Polak

Abstract

We present a validation of a centralized feedback control law for robotic or partially robotic water craft whose task is to defend a harbor from an intruding fleet of water craft. Our work was motivated by the need to provide harbor defenses against hostile, possibly suicidal intruders, preferably using unmanned craft to limit potential casualties. Our feedback control law is a sample‐data receding horizon control law, which requires the solution of a complex max‐min problem at the start of each sample time. In developing this control law, we had to deal with three challenges. The first was to develop a max‐min problem that captures realistically the nature of the defense‐intrusion game. The second was to ensure the solution of this max‐min problem can be accomplished in a small fraction of the sample time that would be needed to control a possibly fast moving craft. The third, to which this article is dedicated, was to validate the effectiveness of our control law first through computer simulations pitting a computer against a computer or a computer against a human, then through the use of model hovercraft in a laboratory, and finally on the Chesapeake Bay, using Yard Patrol boats. © 2016 Wiley Periodicals, Inc. Naval Research Logistics 63: 247–259, 2016

Suggested Citation

  • Joseph Foraker & Seungho Lee & Elijah Polak, 2016. "Validation of a strategy for harbor defense based on the use of a min‐max algorithm receding horizon control law," Naval Research Logistics (NRL), John Wiley & Sons, vol. 63(3), pages 247-259, April.
  • Handle: RePEc:wly:navres:v:63:y:2016:i:3:p:247-259
    DOI: 10.1002/nav.21687
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/nav.21687
    Download Restriction: no

    File URL: https://libkey.io/10.1002/nav.21687?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Eric Langford, 1973. "A continuous submarine versus submarine game," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 20(3), pages 405-417, September.
    2. Hoam Chung & Elijah Polak & Johannes O. Royset & Shankar Sastry, 2011. "On the optimal detection of an underwater intruder in a channel using unmanned underwater vehicles," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(8), pages 804-820, December.
    3. Alan R. Washburn, 1982. "On patrolling a channel," Naval Research Logistics Quarterly, John Wiley & Sons, vol. 29(4), pages 609-615, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Di & Yan, Xiangbin & Peng, Rui & Wu, Shaomin, 2020. "Risk-attitude-based defense strategy considering proactive strike, preventive strike and imperfect false targets," Reliability Engineering and System Safety, Elsevier, vol. 196(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Roberto Szechtman & Moshe Kress & Kyle Lin & Dolev Cfir, 2008. "Models of sensor operations for border surveillance," Naval Research Logistics (NRL), John Wiley & Sons, vol. 55(1), pages 27-41, February.
    2. Alpern, Steve & Lidbetter, Thomas & Papadaki, Katerina, 2019. "Optimizing periodic patrols against short attacks on the line and other networks," European Journal of Operational Research, Elsevier, vol. 273(3), pages 1065-1073.
    3. Hoam Chung & Elijah Polak & Johannes O. Royset & Shankar Sastry, 2011. "On the optimal detection of an underwater intruder in a channel using unmanned underwater vehicles," Naval Research Logistics (NRL), John Wiley & Sons, vol. 58(8), pages 804-820, December.
    4. Claire Walton & Panos Lambrianides & Isaac Kaminer & Johannes Royset & Qi Gong, 2018. "Optimal motion planning in rapid‐fire combat situations with attacker uncertainty," Naval Research Logistics (NRL), John Wiley & Sons, vol. 65(2), pages 101-119, March.
    5. Calvin Kielas-Jensen & Venanzio Cichella & David Casbeer & Satyanarayana Gupta Manyam & Isaac Weintraub, 2021. "Persistent Monitoring by Multiple Unmanned Aerial Vehicles Using Bernstein Polynomials," Journal of Optimization Theory and Applications, Springer, vol. 191(2), pages 899-916, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:navres:v:63:y:2016:i:3:p:247-259. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)1520-6750 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.