IDEAS home Printed from https://ideas.repec.org/a/wly/greenh/v14y2024i1p197-208.html
   My bibliography  Save this article

Experimental study on the flow characteristics of supercritical CO2 in reservoir sandstones from the Ordos Basin, China

Author

Listed:
  • Qianlin Zhu
  • Dongbao Chen
  • Shijian Lu
  • Shaojin Jiang

Abstract

Understanding the flow characteristics of supercritical CO2 in dry sandstones or those with low water content provides crucial information on the flow behavior in near‐wellbore zone. We conducted supercritical CO2 core flooding experiments using sandstone cores extracted from potential CO2 reservoirs in the Ordos Basin, China. During the experiments, we reduced the water content of saturated cores by flushing with dry CO2 and subsequently vacuumizing them at a temperature of 35°C to simulate sandstones with low water content. The experimental results demonstrate that the CO2 permeability was initially high during the low differential pressure stage and remained constant as the differential pressure increased. In the carbonic acid solution injection experiment, we observed an increase in the flow rate of the solution with the continuous interaction in the cores from the Shanxi and Shihezi groups, while the Yanchang group exhibited the opposite effect. This increase in permeability can be attributed to mineral dissolution and the loss of fine particles. Conversely, the blockage of fine particles or the precipitation of dissolved minerals may lead to a decrease in permeability. After the CO2–water–rock interaction, the CO2 permeability decreased compared to before the interaction, indicating that adsorbed water, the precipitation of dissolved mineral, or pore throat blockage by fine particles could induce this permeability decrease. The impact of adsorbed water on the decrease in CO2 permeability is significant. Additionally, the CO2–water–rock interaction caused corrosion on the anorthite surface. Furthermore, calcite dispersed in connected pores displayed a more pronounced dissolution compared to cemented calcite. © 2023 Society of Chemical Industry and John Wiley & Sons, Ltd.

Suggested Citation

  • Qianlin Zhu & Dongbao Chen & Shijian Lu & Shaojin Jiang, 2024. "Experimental study on the flow characteristics of supercritical CO2 in reservoir sandstones from the Ordos Basin, China," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 14(1), pages 197-208, February.
  • Handle: RePEc:wly:greenh:v:14:y:2024:i:1:p:197-208
    DOI: 10.1002/ghg.2246
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/ghg.2246
    Download Restriction: no

    File URL: https://libkey.io/10.1002/ghg.2246?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:greenh:v:14:y:2024:i:1:p:197-208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: https://doi.org/10.1002/(ISSN)2152-3878 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.