IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v30y2019i6ne2562.html
   My bibliography  Save this article

On spatial conditional extremes for ocean storm severity

Author

Listed:
  • R. Shooter
  • E. Ross
  • J. Tawn
  • P. Jonathan

Abstract

We describe a model for the conditional dependence of a spatial process measured at one or more remote locations given extreme values of the process at a conditioning location, motivated by the conditional extremes methodology of Heffernan and Tawn. Compared to alternative descriptions in terms of max‐stable spatial processes, the model is advantageous because it is conceptually straightforward and admits different forms of extremal dependence (including asymptotic dependence and asymptotic independence). We use the model within a Bayesian framework to estimate the extremal dependence of ocean storm severity (quantified using significant wave height, HS) for locations on spatial transects with approximate east–west (E‐W) and north–south (N‐S) orientations in the northern North Sea (NNS) and central North Sea (CNS). For HS on the standard Laplace marginal scale, the conditional extremes “linear slope” parameter α decays approximately exponentially with distance for all transects. Furthermore, the decay of mean dependence with distance is found to be faster in CNS than NNS. The persistence of mean dependence is greatest for the E‐W transect in NNS, potentially because this transect is approximately aligned with the direction of propagation of the most severe storms in the region.

Suggested Citation

  • R. Shooter & E. Ross & J. Tawn & P. Jonathan, 2019. "On spatial conditional extremes for ocean storm severity," Environmetrics, John Wiley & Sons, Ltd., vol. 30(6), September.
  • Handle: RePEc:wly:envmet:v:30:y:2019:i:6:n:e2562
    DOI: 10.1002/env.2562
    as

    Download full text from publisher

    File URL: https://doi.org/10.1002/env.2562
    Download Restriction: no

    File URL: https://libkey.io/10.1002/env.2562?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miranda J. Fix & Daniel S. Cooley & Emeric Thibaud, 2021. "Simultaneous autoregressive models for spatial extremes," Environmetrics, John Wiley & Sons, Ltd., vol. 32(2), March.
    2. Jordan Richards & Jennifer L. Wadsworth, 2021. "Spatial deformation for nonstationary extremal dependence," Environmetrics, John Wiley & Sons, Ltd., vol. 32(5), August.
    3. Federica Stolf & Antonio Canale, 2023. "A hierarchical Bayesian non‐asymptotic extreme value model for spatial data," Environmetrics, John Wiley & Sons, Ltd., vol. 34(7), November.
    4. R. Shooter & E. Ross & A. Ribal & I. R. Young & P. Jonathan, 2021. "Spatial dependence of extreme seas in the North East Atlantic from satellite altimeter measurements," Environmetrics, John Wiley & Sons, Ltd., vol. 32(4), June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:30:y:2019:i:6:n:e2562. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.