IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v25y2014i7p528-547.html
   My bibliography  Save this article

HAC robust trend comparisons among climate series with possible level shifts

Author

Listed:
  • Ross R. McKitrick
  • Timothy J. Vogelsang

Abstract

Comparisons of trends across climatic data sets are complicated by the presence of serial correlation and possible step‐changes in the mean. We build on heteroskedasticity and autocorrelation robust methods, specifically the Vogelsang–Franses (VF) nonparametric testing approach, to allow for a step‐change in the mean (level shift) at a known or unknown date. The VF method provides a powerful multivariate trend estimator robust to unknown serial correlation up to but not including unit roots. We show that the critical values change when the level shift occurs at a known or unknown date. We derive an asymptotic approximation that can be used to simulate critical values, and we outline a simple bootstrap procedure that generates valid critical values and p‐values. Our application builds on the literature comparing simulated and observed trends in the tropical lower troposphere and mid‐troposphere since 1958. The method identifies a shift in observations around 1977, coinciding with the Pacific Climate Shift. Allowing for a level shift causes apparently significant observed trends to become statistically insignificant. Model overestimation of warming is significant whether or not we account for a level shift, although null rejections are much stronger when the level shift is included. © 2014 The Authors. Environmetrics published by John Wiley & Sons, Ltd.

Suggested Citation

  • Ross R. McKitrick & Timothy J. Vogelsang, 2014. "HAC robust trend comparisons among climate series with possible level shifts," Environmetrics, John Wiley & Sons, Ltd., vol. 25(7), pages 528-547, November.
  • Handle: RePEc:wly:envmet:v:25:y:2014:i:7:p:528-547
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alaa Abi Morshed & Elena Andreou & Otilia Boldea, 2018. "Structural Break Tests Robust to Regression Misspecification," Econometrics, MDPI, vol. 6(2), pages 1-39, May.
    2. G. Cornelis van Kooten & Mark E. Eiswerth & Jonathon Izett & Alyssa R. Russell, 2021. "Climate Change and the Social Cost of Carbon: DICE Explained and Expanded," Working Papers 2021-01, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.
    3. Claudio, Morana & Giacomo, Sbrana, 2017. "Some Financial Implications of Global Warming: An Empirical Assessment," Working Papers 377, University of Milano-Bicocca, Department of Economics, revised 25 Dec 2017.
    4. Claudio Morana & Giacomo Sbrana, 2017. "Temperature Anomalies, Radiative Forcing and ENSO," Working Papers 2017.09, Fondazione Eni Enrico Mattei.
    5. Morana, Claudio & Sbrana, Giacomo, 2019. "Climate change implications for the catastrophe bonds market: An empirical analysis," Economic Modelling, Elsevier, vol. 81(C), pages 274-294.
    6. Pierre Perron & Eduardo Zorita & Timothy J. Vogelsang & Nasreen Nawaz, 2017. "Estimation and Inference of Linear Trend Slope Ratios With an Application to Global Temperature Data," Journal of Time Series Analysis, Wiley Blackwell, vol. 38(5), pages 640-667, September.
    7. Chang, Yoosoon & Kaufmann, Robert K. & Kim, Chang Sik & Miller, J. Isaac & Park, Joon Y. & Park, Sungkeun, 2020. "Evaluating trends in time series of distributions: A spatial fingerprint of human effects on climate," Journal of Econometrics, Elsevier, vol. 214(1), pages 274-294.
    8. Friedrich, Marina & Smeekes, Stephan & Urbain, Jean-Pierre, 2020. "Autoregressive wild bootstrap inference for nonparametric trends," Journal of Econometrics, Elsevier, vol. 214(1), pages 81-109.
    9. Marina Friedrich & Eric Beutner & Hanno Reuvers & Stephan Smeekes & Jean-Pierre Urbain & Whitney Bader & Bruno Franco & Bernard Lejeune & Emmanuel Mahieu, 2020. "A statistical analysis of time trends in atmospheric ethane," Climatic Change, Springer, vol. 162(1), pages 105-125, September.
    10. Claudio, Morana & Giacomo, Sbrana, 2017. "Some Financial Implications of Global Warming: An Empirical Assessment," Working Papers 377, University of Milano-Bicocca, Department of Economics, revised 25 Dec 2017.
    11. G. Cornelis van Kooten, 2020. "Climate Change and Agriculture," Working Papers 2020-01, University of Victoria, Department of Economics, Resource Economics and Policy Analysis Research Group.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:25:y:2014:i:7:p:528-547. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.