IDEAS home Printed from https://ideas.repec.org/a/wly/envmet/v25y2014i6p454-471.html
   My bibliography  Save this article

Scenarios for future wildfire risk in California: links between changing demography, land use, climate, and wildfire

Author

Listed:
  • Haiganoush K. Preisler
  • Benjamin P. Bryant
  • Anthony L. Westerling

Abstract

Over 21,000 future California residential wildfire risk scenarios were developed on a monthly 1/8° grid, using statistical wildfire models. We explore interactions between two global emissions scenarios, three climate models, six spatially explicit population growth scenarios derived from two growth models, and a range of parameters defining properties' vulnerability to loss. Scenarios are evaluated over two future time periods relative to historic baselines. We also explore effects of spatial resolutions for calculating household exposure to wildfire on changes in estimated future property losses. Our goal was not to produce one authoritative set of future risk scenarios but rather to understand what parameters are important for robustly characterizing effects of climate and growth on future residential property risks. By end of century, variation across development scenarios accounts for far more variability in statewide residential wildfire risks than does variation across climate scenarios. However, the most extreme increases in residential fire risks result from combining high‐growth/high‐sprawl scenarios with the most extreme climates considered here. Case studies for the Bay Area and the Sierra foothills demonstrate that, while land use decisions profoundly influence future residential wildfire risks, effects of diverse growth and land use strategies vary greatly around the state. Copyright © 2014 John Wiley & Sons, Ltd.

Suggested Citation

  • Haiganoush K. Preisler & Benjamin P. Bryant & Anthony L. Westerling, 2014. "Scenarios for future wildfire risk in California: links between changing demography, land use, climate, and wildfire," Environmetrics, John Wiley & Sons, Ltd., vol. 25(6), pages 454-471, September.
  • Handle: RePEc:wly:envmet:v:25:y:2014:i:6:p:454-471
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Massimiliano Agovino & Massimiliano Cerciello & Aniello Ferraro & Antonio Garofalo, 2021. "Spatial analysis of wildfire incidence in the USA: the role of climatic spillovers," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(4), pages 6084-6105, April.
    2. Lomborg, Bjorn, 2020. "Welfare in the 21st century: Increasing development, reducing inequality, the impact of climate change, and the cost of climate policies," Technological Forecasting and Social Change, Elsevier, vol. 156(C).
    3. Feliu Serra-Burriel & Pedro Delicado & Fernando M. Cucchietti, 2021. "Wildfires Vegetation Recovery through Satellite Remote Sensing and Functional Data Analysis," Mathematics, MDPI, vol. 9(11), pages 1-22, June.
    4. Caroline J. Williams & Rachel A. Davidson & Linda K. Nozick & Meghan Millea & Jamie L. Kruse & Joseph E. Trainor, 2023. "Single-family housing inventory projection method for natural hazard risk modeling applications," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 119(1), pages 409-434, October.
    5. Hamel, Perrine & Bryant, Benjamin P., 2017. "Uncertainty assessment in ecosystem services analyses: Seven challenges and practical responses," Ecosystem Services, Elsevier, vol. 24(C), pages 1-15.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:wly:envmet:v:25:y:2014:i:6:p:454-471. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Wiley Content Delivery (email available below). General contact details of provider: http://www.interscience.wiley.com/jpages/1180-4009/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.